
Learn to use SQL 

Tamar E. Granor 
Tomorrow's Solutions, LLC 

Voice: 215-635-1958 
Email: tamar@tomorrowssolutionsllc.com 

Web: www.tomorrowssolutionsllc.com 
 

 

SQL (Structured Query Language) offers a powerful, set-oriented approach to working with 
data that is quite different from the traditional record-oriented Xbase techniques.  
 
This pre-conference session covers the basic SQL commands, from ALTER TABLE to UPDATE. 
We'll see how to use SQL to create and manage databases and tables, see the power of SQL for 
querying data, and look at adding, updating and removing data with SQL. We'll look at some 
of the differences between the dialects supported by Visual FoxPro, SQL Server and 
PostgreSQL. 

  

mailto:tamar@tomorrowssolutionsllc.com
http://www.tomorrowssolutionsllc.com/


Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 2 of 115 

What is SQL? 
SQL, or Structured Query Language, is a standardized language for working with relational 
databases. Despite the word "query" in its name, SQL provides commands for both defining 
and manipulating data. 

Some people read SQL as "sequel" while others prefer to use the individual letters (s, q, l). 
Either name is acceptable; this paper assumes you're reading "SQL" as "sequel" and makes 
other word choices accordingly. 

SQL looks at data from a set perspective rather than the record perspective of Xbase 
languages. That is, SQL has no concept of record numbers and treats the position of a 
record in a set as an artifact, not an essential characteristic. Therefore, SQL commands 
don't address individual records; they address groups of records (though a particular 
group may contain only a single record).  

SQL's set orientation means that it's non-procedural. That is, a SQL command indicates 
what data to work with, but doesn't indicate how to find that data. The Xbase concept most 
like this is the FOR clause that allows you to operate on a group of records without having 
to find them individually. However, with FOR, the order in which records are processed is 
determined by the underlying order of records; with SQL commands, no such ordering is 
implied. 

FoxPro developers have had access to a subset of the SQL language since FoxPro 2.0. The 
group of commands supported and their capabilities grew over time. Late versions of VFP 
focused on increasing compliance with the ANSI-92 standard for SQL. VFP 9 also added 
many capabilities not supported in earlier versions. 

Xbase++ has had the ability to communicate with SQL back-ends since version 1.5, but 
didn’t gain its own SQL dialect until version 2.0. That native dialect, unlike VFP’s, lets you 
address both local and remote data. 

Most developers talking about SQL, however, are likely referring to products such as 
Microsoft SQL Server, PostgreSQL, MySQL, or Oracle. Each of them provides a server that 
stores databases, and may include tools for managing those databases. In this session, we’ll 
look at Microsoft SQL Server and the open source PostgreSQL. 

Any full-fledged database language needs two types of command, those that let you define a 
database and those that let you work with the data in the database. Formally, these two 
types are called Data Definition Language (DDL) and Data Manipulation Language (DML). 
SQL has both types, allowing you to use it for both creating and managing data. 

For a program to address a database server, typically you need to create a connection to 
the remote database and then send commands to the server through that connection. In 
VFP, you send commands to a server via the SQLExec() function; in Xbase++, you add the 
VIA keyword to the relevant SQL command.  



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 3 of 115 

This paper doesn’t look at making connections or sending commands to remote servers. 
Almost all testing was done in an IDE for the server (SQL Server Management Studio for 
SQL Server, and pgAdmin III for PostgreSQL). In a few cases, where there was a question 
about how a command would behave when executed remotely, I tested using Visual 
FoxPro’s SQLExec() function. 

Terminology 
Before jumping into SQL commands, it's helpful to review some terminology. A database is 
a collection of tables that holds information about some group of entities, such as sales 
information for a company, or course and registration information for a school. In the 
server products, a database is a single entity (though the actual storage mechanism varies 
from one product to another). In VFP, a database is represented by a DBC (database 
container). However, unlike many other database engines, VFP doesn't store the actual data 
in the DBC. Instead, it stores information (called metadata) about the structure of the 
database, including lists of tables, the fields in those tables and indexes. 

A table contains information about a single type of entity, such as customers or courses. A 
table is composed of records, with each record holding information about a single entity 
(one customer or one course). In VFP, tables are stored as DBF files. If you visualize a table 
as a printed table or a spreadsheet, then each record is represented by a single row. In SQL, 
in fact, it's common to use the term row rather than record, and the two terms are used 
interchangeably in this paper. 

A field is a single piece of information, such as customer's postal code or a course's title. 
Each record in a table contains one or more fields. All the records in a specific table have 
the same set of fields. In the printed table/spreadsheet analogy, a field is a column; the 
term column is widely used when discussing SQL. The terms “field” and “column” are used 
interchangeably in this paper. 

An index or tag is an ordering of a particular table, based on the data in one or more fields. 
The expression on which an index is based is called its key. In VFP, indexes are stored in 
CDX files; each CDX can contain many indexes. VFP uses indexes for optimization, as well as 
to determine the display order of records in a table. Server databases also use indexes for 
optimization, but the result-oriented nature of working in SQL means that the developer 
rarely addresses indexes directly. 

A relation is a connection between two tables. In a relational database, data is spread out 
among many tables. A relation lets you connect information from two tables based on their 
contents. There are two main ways relations are used. The first is to let one table look up 
information in another table. One principle of relational databases is to store each piece of 
information once and only once; that ensures that there’s no ambiguity about the correct 
value of that information. These items (such as products or departments) are assigned a 
unique code. Then, the code is stored where the item is needed; for example, a product's 
code is stored in the invoice record and a department's code is stored in the record for each 
member of the department. The second main use for relations is in one-to-many 
relationships between tables. The prototypical example is an invoice, where the invoice 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 4 of 115 

header is stored in one table and the individual line items in another. In both cases, the 
relation indicates how to connect the two. VFP supports persistent relations, relations that 
are defined in the database. While persistent relations don't force particular behavior, 
many of VFP's design tools use them to cut down on the code you have to write. SQL 
databases allow you to specify relations between tables using constraints, discussed below. 

The term cursor is an acronym for "CURrent Set Of Records." In VFP, a cursor is a 
temporary table, which can be created several ways, but always disappears when closed. 
Cursors are extremely useful with VFP’s SQL, as they let you generate results, use them, and 
then clean up without having to worry about filenames or paths. In the server databases, 
the term cursor specifically refers to an object that lets you work with data one row at a 
time (which, as noted earlier, is not the SQL way); in general, experts recommend using 
other techniques if possible. However, this document occasionally uses the term “cursor” to 
refer to a result set from a query, even if it’s not actually stored in a cursor.  

Xbase languages like VFP and Xbase++ use work areas to keep track of open tables. Each 
table or cursor is opened in a work area and can be referenced using the work area 
number. Many Xbase commands apply to the current work area unless you specify 
otherwise. SQL commands, however, have no concept of work areas. Tables are opened as 
needed. In VFP, however, since tables must always be opened in work areas, the native SQL 
commands use available work areas. The SQL databases have no notion of work area. 

A code page specifies a character set. Using different code pages allows you to work with 
the native characters of different languages. A collation sequence determines the order 
characters are sorted. The default collation sequence, MACHINE, sorts in ASCII order. 
However, for some languages, that sequence doesn't produce the correct alphabetical 
order.  

In VFP, every table has an associated code page that indicates what character set it uses. 
VFP supports a number of other collation sequences that make it possible to sort in a 
variety of other languages (such as Spanish, Czech, and Icelandic). 

The server databases combine the concepts of code page and collation sequence into a 
single notion they call collation. In SQL Server you can specify collation at the database 
level and the column level. In PostgreSQL, you can specify collation at the table level as 
well, though, of course, it only affects character fields. 

Constraints are rules used to enforce the integrity of data. They include whether or not a 
column accepts nulls, rules for an individual column, rules for an entire row, and 
specification of a field as a primary key, unique (that is, candidate) key, or foreign key. VFP 
supports all of these, but doesn’t use the term “constraints.” 

Notation 
Each of the SQL versions here has some notational differences. Such differences can be 
annoying when moving from one to the other. This section covers those differences 
relevant to the rest of this paper. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 5 of 115 

Strings 

In VFP, there are three sets of delimiters to indicate strings: single quotes, double quotes 
and square brackets. While a given string must end with a delimiter that matches the one it 
started with, you can choose any of the three for any given string. Having three sets means 
that VFP doesn’t offer any kind of escape notation for including the delimiters themselves. 
Instead, you’re expected to choose a set of delimiters that don’t appear within the string. 
That is, for example, if you have a name that includes an apostrophe, you use double quotes 
or square brackets, as in "O'Brien" or [O’Brien]. 

In SQL Server and PostgreSQL, strings are always surrounded by single quotes. In both, if 
the string contains an apostrophe, you indicate it by using two single quotes in a row, as in 
'O''Brien'. In SQL Server, changing the QUOTED_IDENTIFIER setting allows you to surround 
strings with double quotes; in that case, you don’t need to use double apostrophes within a 
string. 

Dates and DateTimes 

VFP offers both date and datetime data types. Both are delimited by curly braces, for 
example, {10/31/2016}. You can specify a setting-independent date or datetime by starting 
with a carat (^) and using YYYY-MM-DD HH:MM:SS format, as in {^ 2016-10-31 10:15:37}.  

SQL Server supports both types as well, though date wasn’t added until SQL Server 2008. 
SQL Server is smart enough to convert a string that contains a date or datetime to the 
appropriate type when storing it in a field, so you can often specify a date or datetime 
simply by surrounding it with single quotes. To store a date or datetime in a variable, you 
can wrap the string with curly braces and add ‘d’ or ‘t’ in front, as in {d '2016-10-31'}. 

PostgreSQL supports date and timestamp, which is the same as datetime (and can 
optionally include time zone). As in SQL Server, strings containing dates and timestamps 
are automatically converted when stored to fields. Date and timestamp literals are 
specified by indicating the type and then surrounding the value with single quotes, as in 
date '2016-10-31'. 

Both SQL Server and PostgreSQL accept dates and datetimes in a variety of formats, not just 
YYYY-MM-DD. (Both also support some other date and time related types.) 

Identifiers  

In general, it’s a bad idea to use reserved words as identifiers, but it’s not unusual to find 
them used that way. Each of the languages has a way to distinguish table and field names 
from matching reserved words, as well as to address identifiers that have embedded blanks 
(also generally a bad idea). 

In VFP, tables, cursors and fields cannot have spaces embedded in their names. However, 
when working with remote data, you can have field names with embedded spaces. In 
addition, the path to a VFP table can contain spaces. In many cases, VFP will allow you to 
create and refer to a table, cursor or field whose name is a reserved word, but sometimes 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 6 of 115 

doing so will give strange results or an error. To reference a field name or table with 
embedded spaces or that’s a reserved word, you can surround it with any of the string 
delimiters. So, for example, to refer to a field named Desc, it’s wise to use [Desc] or "Desc". 

SQL Server uses square brackets around identifiers for this purpose. In fact, when you ask 
SQL Server Management Studio (SSMS) to generate code, it always wraps all identifiers 
with square brackets. 

PostgreSQL uses double quotes to distinguish identifiers. pgAdmin III automatically adds 
the double quotes if they’re needed when generating code. 

Syntax listings 

In this paper, listings of SQL syntax use square brackets (“[“ and “]”) to indicate optional 
elements and vertical bars (“|”, also known as “pipe”) to indicate choices. For example, 
Listing 1 shows the syntax of the VFP SEEK command. It has three optional sections: one to 
specify the index order to use for the search, one to specify ascending or descending order, 
and one to indicate the alias or workarea in which to search. Each of those sections has 
multiple options of which you can choose one. For example, you can specify either 
ASCENDING or DESCENDING (or neither), but not both. 

Listing 1. In this paper, square brackets in syntax diagrams indicate optional components, while vertical bars 
separate choices, of which you can use at most one. 

SEEK uExpression 
  [ ORDER nIndexNumber | IDXFile  
   | [ TAG ] TagName [ OF CDXFile ] 
  [ ASCENDING | DESCENDING ] ] 
  [ IN cAlias | nWorkArea ] 

Case-sensitivity 
VFP and SQL Server pay no attention to the case you use when creating or referring to 
tables and fields. PostgreSQL, however, is case-sensitive for those items.  

Unless you specify otherwise, PostgreSQL creates all tables and fields with lower-case 
names. Similarly, when referring to a table or field, PostgreSQL internally converts 
whatever you type to lower-case, unless you surround it with double-quotes. So, for 
example, customer and Customer both refer to a table named customer (all lower-case), 
but “Customer” refers to a table named Customer (with the “C” in upper-case). “customer” 
and “Customer” are two different tables in PostgreSQL. 

Examples  
The examples in these notes use a database called Chinook that contains information for a 
fictitious online music-selling service. It tracks artists, albums and tracks as well as 
customers and invoices. Figure 1 shows the database structure; the diagram was 
generated by SQL Server Management Studio 2014. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 7 of 115 

 

Figure 1. The Chinook database has data on artists, albums, tracks and playlists, as well as about customers 
and sales. 

You can download code to create the Chinook database in SQL Server, PostgreSQL and a 
number of other databases from CodePlex: https://chinookdatabase.codeplex.com/. I 

Album
AlbumId

Title

ArtistId

Artist
ArtistId

Name

Customer
CustomerId

FirstName

LastName

Company

Address

City

State

Country

PostalCode

Phone

Fax

Email

SupportRepId

Genre
GenreId

Name

Invoice
InvoiceId

CustomerId

InvoiceDate

BillingAddress

BillingCity

BillingState

BillingCountry

BillingPostalCode

Total

Employee
EmployeeId

LastName

FirstName

Title

ReportsTo

BirthDate

HireDate

Address

City

State

Country

PostalCode

Phone

Fax

Email

InvoiceLine
InvoiceLineId

InvoiceId

TrackId

UnitPrice

Quantity

MediaType
MediaTypeId

Name

Playlist
PlaylistId

Name

PlaylistTrack
PlaylistId

TrackId

Track
TrackId

Name

AlbumId

MediaTypeId

GenreId

Composer

Milliseconds

Bytes

UnitPrice

https://chinookdatabase.codeplex.com/


Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 8 of 115 

adapted one of them to create a Visual FoxPro version of the Chinook database; the code to 
do so is included in the materials for this session as 
Chinook_VisualFoxPro_AutoincrementPKs.PRG. The PostgreSQL version of the Chinook 
database creates mixed-case table and field names; you’ll see that reflected in the example 
code in this paper. http://tinyurl.com/jdr7jux describes and links a script for a PostgreSQL 
version of Chinook more in keeping with PostgreSQL best practices, including lower-case 
table and field names. 

Most examples in this paper are included in the downloads for this session. In most cases, 
when an example is included, the downloads have VFP, SQL Server and PostgreSQL 
versions. The base name for the example is shown in parentheses, like this 
(ExampleName). The VFP version is ExampleName.PRG, the SQL Server version is 
ExampleNameSS.SQL, and the PostgreSQL version is ExampleNamePS.SQL. 

Defining Databases 
SQL has a number of commands for defining the structure of a database. You can create a 
database, add and remove tables, and modify the structure of a table. In VFP, you can also 
create and modify cursors. In the server databases, you can create and modify many other 
kinds of objects as well, including indexes, users, and stored procedures and functions. 

In the server databases, an easy way to explore these commands is to generate scripts from 
existing objects. In SSMS, right-click on the relevant object and choose Script <object> as | 
CREATE to | New Query Editor Window, as in Figure 2, which shows the UI for generating 
a script to create the Chinook Album table.  

 

Figure 2. In SSMS, you can generate code to recreate a database, a table, and many other database objects. 

In pgAdmin, seeing a script is as simple as clicking on the object of interest. When you do 
so, code to create that object appears in the SQL pane. However, you can also send the code 
to the Query tool; the specific instructions vary by object. For many objects (including 
databases, indexes and constraints), you right-click and choose CREATE script. For tables, 
you right-click and choose Scripts | CREATE Script, as in Figure 3. 

http://tinyurl.com/jdr7jux


Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 9 of 115 

 

Figure 3. In pgAdmin III, clicking on an object shows a script to create it, but you can send the script to the 
Query tool, as well. 

In VFP, you can’t generate code to recreate a database or table as easily or as granularly. 
However, the GenDBC tool that comes with VFP generates a script to recreate the entire 
database. GenDBC is found in the Tools\GenDBC folder of the VFP installation.  

In all three cases, the generated code recreates the structure, but does not populate it with 
existing records. 

Creating a database 

CREATE DATABASE lets you set up a new database. In VFP, it creates a database container. 
While the basic command is quite simple, the full syntax varies, with SQL Server offering a 
tremendous number of optional clauses. Listing 2 shows the simplest form, which works 
with all three databases.  

Listing 2. Creating a new database is simple, though PostgreSQL and SQL Server support additional clauses. 

CREATE DATABASE Name  

In VFP, include the path as part of the name to specify where the DBC is stored. Here, as in 
many other places, VFP lets you use ? in place of the database name to be prompted for a 
name. 

Listing 3 creates the Chinook database. 

Listing 3. This code creates the Chinook database for all three SQL engines. 

CREATE DATABASE Chinook 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 10 of 115 

Creating tables 

A database with no tables isn't much use. The CREATE TABLE command lets you define 
tables. In VFP, it can create both tables contained in a database and free tables that aren't 
part of any database. 

CREATE TABLE is quite powerful. Not only does it create a table, but it can also create 
indexes and establish relationships between tables. 

The common syntax for CREATE TABLE is shown in Listing 4. The diagram hides a few 
variations. In particular, the various items indicated as Specs (such as PrimaryKeySpec) are 
handled differently in each database; the differences will be shown by example. Each 
language supports a variety of additional clauses. In some cases, those clauses offer 
different ways of doing the same thing, such as specifying code page and collation 
sequence. Others are unique to the SQL version, such VFP’s ability to indicate that a table 
should be created as a free (non-database) table and SQL Server’s clauses for specifying 
that a rule or relationship should not be replicated with the database. 

Listing 4. The CREATE TABLE command lets you create new tables programmatically. 

CREATE TABLE TableName  
       ( FieldName1 FieldType1  
          [ ( nFieldWidth1 [ , nDecimals1 ] ) ] 
          [ NULL | NOT NULL ]   
          [ IdentityFieldIndicator ] 
          [ CHECK lFieldRule1 ] 
          [ DEFAULT eDefaultExpression1 ] 
          [ PRIMARY KEY | UNIQUE ] 
          [ REFERENCES ReferencedTable1 [ ReferencedColOrTag1 ] ] 
        [, FieldName2 ... ] 
        [, PRIMARY KEY PrimaryKeySpec ] 
        [, UNIQUE UniqueKeySpec ] 
        [, FOREIGN KEY ForeignKeySpec REFERENCES ReferencedTableSpec ] 
        [, CHECK lTableRule ]  
       ) 

At first glance (and probably at several subsequent glances), this syntax is quite daunting. 
Fortunately, it can be broken down into small, digestible chunks. 

Setting up the table 

CREATE TABLE requires you to list the fields you want in the table and allows you to 
specify a great deal of additional information. You start by naming the table. 

In VFP, TableName can include a path to indicate where to store the table. VFP also 
supports an optional NAME clause that lets you specify a long name for tables contained in 
a database. This is a name that applies only within the context of the database, and is not 
limited by the rules of file-naming or of alias names.  



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 11 of 115 

Specifying fields 

The introductory table information is followed by a list of fields, enclosed in parentheses. 
(Actually, the parentheses surround the field list and any subsequent, table-level clauses.) 
The fields in the list are separated by commas. The syntax for a single field is shown in 
Listing 5. 

Listing 5. The key part of CREATE TABLE is the field list, with the specifications for each field, separated by 
commas. 

FieldName1 FieldType1  
  [ ( nFieldWidth1 [ , nDecimals1 ] ) ] 
  [ NULL | NOT NULL ]   
  [ IdentityFieldIndicator ] 
  [ CHECK lFieldRule1 ] 
  [ DEFAULT eDefaultExpression1 ] 
  [ PRIMARY KEY | UNIQUE ] 
  [ REFERENCES ReferencedTable1 [ReferencedColOrTag1 ] ] 

Two items are required for every field, the field name and the type. The field name must 
follow the database’s rules for identifiers. 

In VFP, the field type can be specified using either a single character or (in VFP 9) the full 
name of the type you want. In SQL Server and PostgreSQL, you use the full name of the 
type. Table 1 shows commonly used types, indicates which databases support them and 
specifies their names in the different databases. The final column indicates what additional 
information you have to provide to create a field of that type. 

Table 1. PostgreSQL and SQL Server support many more (or more finely-grained) data types than VFP. 

Category Used for VFP name SQL Server name PostgreSQL 
name 

Additionally 
specify 

Logical True/False 
values 

Logical Bit boolean  

Character Character 
strings of 
fixed, limited 
size 

Character Char (for non-
Unicode), NChar 
(for Unicode) 

character Width 

Character Character 
strings of 
variable, 
limited size 

VarChar Varchar (for non-
Unicode), 
NVarchar (for 
Unicode)  

varchar  Width 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 12 of 115 

Category Used for VFP name SQL Server name PostgreSQL 
name 

Additionally 
specify 

Character Unlimited (up 
to 2GB) 
character 
strings 

Memo Text (for non-
Unicode), NText 
(for Unicode) 

text  

Date/Time Dates Date Date date  

Date/Time Date/time 
combinations 

DateTime DateTime, 
DateTime2, 
DateTimeOffset 

timestamp, 
timestamp 
with time 
zone 

In SQL Server 
and 
PostgreSQL, 
fractional  
seconds 
precision 
(optional) 

Date/Time Times  Time time Fractional  
seconds 
precision 
(optional) 

Date/Time Time 
intervals 

  interval Field or fields 
(optional 
indicates that 
kind of 
intervals 
stored), and 
fractional 
seconds 
precision 
(optional) 

Numeric Numeric 
values with 
fixed 
precision and 
scale 

Numeric, 
Float 

Decimal, 
Numeric 

decimal, 
numeric 

Width and 
decimals 
(optional) 

Numeric Integer data Integer (4 
bytes) 

TinyInt (1 byte), 
SmallInt (2 
bytes), Int (4 
bytes), BigInt (8 
bytes) 

smallint (2 
bytes), 
integer (4 
bytes), 
bigint (8 
bytes) 

 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 13 of 115 

Category Used for VFP name SQL Server name PostgreSQL 
name 

Additionally 
specify 

Numeric Floating point 
values 

Double Float, Real real (4 
bytes), 
double 
precision (8 
bytes) 

In VFP, 
decimals 
(optional). In 
SQL Server, 
for float only, 
mantissa 
(optional). 

Currency Money 
amounts 

Currency Money (8 bytes), 
SmallMoney (4 
bytes) 

money  

Binary Binary data of 
limited size 

VarBinary Binary (fixed 
length), 
VarBinary 
(variable length) 

 Width 

Binary Binary data of 
unlimited size 

Blob VarBinary(max) bytea  

 
PostgreSQL also offers the ability to define your own data types. It’s actually one of the core 
functionalities for which PostgreSQL was designed. However, user-defined data types are 
beyond the scope of this paper; see https://www.postgresql.org/docs/current/static/sql-
createtype.html for more information.  

For some data types, you must specify additional information. Most often, it’s the width, the 
number of decimal places or both. These values are enclosed in parentheses following the 
field type. Listing 6 shows similar field lists for each database. In each case, two fields are 
created: Product can hold up to 40 characters; Quantity holds integer values. In the first, 
using VFP notation, Quantity is limited to values from –99 to 999. The second example uses 
SQL Server notation, while the third uses PostgreSQL notation. In both of those, Quantity 
holds any 8-byte integer value. 

Listing 6. Some example field lists. Each creates one character and one numeric field. The first is for VFP, the 
second SQL Server, and the third PostgreSQL. 

(Product C(40), Quantity N(3)) && VFP 
(Product Char(40), Quantity Int) -- SQL Server 
(product character(40), quantity integer) -- PostgreSQL 

In VFP, both the minus sign and the decimal point count toward the width in Numeric. That 
is, if you specify a field as N(5,2), the largest value it can hold is 99.99; the smallest is –9.99. 

https://www.postgresql.org/docs/current/static/sql-createtype.html
https://www.postgresql.org/docs/current/static/sql-createtype.html


Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 14 of 115 

Each field can decide whether or not it accepts nulls. A null value means "I don't know"; it's 
useful for situations where empty data might be meaningful. For example, in a Price field, 0 
could mean that something is free, but null clearly indicates that we don't know the price. 
In PostgreSQL, all columns accept nulls except those where you explicitly include NOT 
NULL. VFP and SQL Server each have a setting that determines what happens when you 
don't specify whether or not nulls are acceptable for a given field. In VFP, the current value 
of SET NULL determines whether the field allows nulls.  

In SQL Server, indicating the default for handling nulls is a two-step process. The 
ANSI_NULL_DEFAULT setting determines how a given database handles a column 
definition that doesn’t include either NULL or NOT NULL.  However, you can override that 
setting using either SET ANSI_NULL_DFLT_OFF or SET ANSI_NULL_DFLT_ON. When the 
default for new columns for the database is nullable, issuing SET ANSI_NULL_DFLT_OFF ON 
means that newly created columns that don’t include NULL or NOT NULL will not accept 
nulls. Similarly, when the default for new columns in the database is not null, issuing SET 
ANSI_NULL_DFLT_ON ON means that newly created columns that don’t include NULL or 
NOT NULL will accept nulls. Because this is so complex, the best practice is to always 
indicate either NULL or NOT NULL for each column. 

It's considered good practice for every table to have a unique id field, with the id internally 
generated and having no inherent meaning to the user. (Such a field is called a surrogate 
key.) Each of the databases provides a way to easily create such a field. In VFP, adding the 
AUTOINC (short for auto-increment) keyword to an Integer field means that VFP generates 
the value of that field for each new record and makes the field read-only. By default, such 
fields start numbering with 1; each new record gets the next integer value. You can set the 
starting value and the increment using the NEXTVALUE and STEP keywords, respectively. 
VFP enforces the uniqueness of these fields. 

SQL Server uses the IDENTITY keyword for the same purpose. You can specify the seed 
(starting) value and increment. Unlike VFP, SQL Server doesn’t enforce uniqueness; you 
need to use a constraint to do so. By default, SQL Server doesn’t let you insert values into 
IDENTITY columns; as long as you leave that default, you shouldn’t run into uniqueness 
issues. 

PostgreSQL uses the SERIAL keyword. However, unlike SQL Server’s IDENTITY keyword, 
SERIAL isn’t an additional item you specify for a column. It’s actually shorthand for 
specifying a non-null integer column with a default value based on calling the built-in 
nextval function. Using SERIAL (or SMALLSERIAL or BIGSERIAL) lets you avoid writing out 
the full specification. As in SQL Server, PostgreSQL doesn’t enforce uniqueness of such 
fields automatically. In addition, unlike VFP and SQL Server, PostgreSQL allows you to 
insert data into these fields, which makes it easy to break them; make it a best practice 
never to do so. 

Listing 7 shows a definition of an auto-incrementing field in each database. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 15 of 115 

Listing 7. Each database lets you define an auto-incrementing integer field, which can serve as a surrogate 
key. 

iID INTEGER AUTOINC && VFP 
iID INT IDENTITY NOT NULL -- SQL Server 
iid SERIAL -- PostgreSQL 

CHECK lets you set up a field rule, an expression that must evaluate to True for every entry 
into the field. VFP supports an optional ERROR clause that lets you specify the message that 
appears when the rule is violated. For example, if you have a numeric field, quantity, that 
must be non-negative, you might set up the rule in Listing 8. 

Listing 8. The CHECK clause of a field definition specifies a rule every value in that field must meet. In SQL 
Server and PostgreSQL, the logical expression must be surrounded by parentheses. 

CHECK quantity>=0 ERROR "Quantity must be 0 or positive." && VFP 
CHECK (quantity>=0) -- SQL Server and PostgreSQL 

It's not unusual for you to want a field to start out with a particular value every time you 
add a new record. For example, a timestamp field should initially hold the date and time a 
record was added. Use the DEFAULT clause to specify the default value for a field; it accepts 
an expression. Listing 9 shows how to set up a timestamp field in each database. 

Listing 9. To specify a default value for a column, you use the DEFAULT keyword followed by an expression 
that returns a value of the appropriate type. 

tStamp DATETIME DEFAULT DATETIME() && VFP 
tStamp DateTime2 DEFAULT GetDate() -- SQL Server 
tstamp timestamp DEFAULT now() -- PostgreSQL 

You can create some indexes at the same time you create the table. Use PRIMARY KEY to 
indicate that a field is the primary key for the table. As the word “the” in the previous 
sentence implies, each table can have only one. In VFP, only tables in a database can have 
primary keys. An index marked as the primary key must be unique for each record in the 
table. As noted earlier, it's also good practice for the primary key to be meaningless in the 
context of the application. Listing 10 shows a typical primary key definition for each 
database. (You can create a primary key using an expression involving one or more fields. 
See “More table information,” later in this paper.) 

Listing 10. Using PRIMARY KEY in a field definition makes that field the primary key for the table. Each table 
can have only one. 

iID I AUTOINC PRIMARY KEY && VFP 
iID INT IDENTITY NOT NULL PRIMARY KEY -- SQL Server 
iid SERIAL NOT NULL PRIMARY KEY -- PostgreSQL 

Tables can also have candidate keys, indexes that are unique for each record, but are not 
marked as the single primary key. Use the UNIQUE keyword to create a candidate key for a 
field, as in Listing 11. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 16 of 115 

Listing 11. The UNIQUE keyword indicates a candidate key. 

iUserID I UNIQUE && VFP 
iUserID Int NOT NULL UNIQUE -- SQL Server 
iUserid integer NOT NULL UNIQUE -- PostgreSQL 

The UNIQUE keyword used here is different than the UNIQUE keyword in VFP’s INDEX 
command. INDEX … UNIQUE is obsolete and should never be used. 

In VFP, for both primary and candidate keys created this way, the tag name is the first 10 
characters of the field name. 

You can set up a relationship between the field you're defining and an existing table as you 
define the table. REFERENCES indicates that this field is a foreign key to the specified table. 
If this field should be linked to the other table's primary key, you need only the 
REFERENCES clause. If this field is a foreign key that connects to a candidate key of the 
other table, you specify it in the command. In VFP, you use TAG CandidateKeyTag; in SQL 
Server and PostgreSQL, you wrap the name of the candidate key field in the other table in 
parentheses. Listing 12 shows an example for each database; in this case, the referenced 
field is the primary key, but I’ve included the explicit reference anyway. 

Listing 12. The REFERENCES keyword creates foreign keys, connections between the current table and other 
tables. In these examples, the referenced field in the target table is specified explicitly, but in SQL Server and 
PostgreSQL, because it’s the primary key of the other table, the field name can be omitted. 

AlbumID I REFERENCES Album TAG AlbumID && VFP 
AlbumID Int NULL REFERENCES Album(AlbumID) -- SQL Server 
"AlbumID" Integer NOT NULL REFERENCES "Album"("AlbumID") -- PostgreSQL 

More table information 

After the list of fields, you can specify additional table level information, including table 
rules and index tags that involve more than a single field. Separate this table information 
from the field list with a comma. Listing 13 shows the syntax for this part of the command; 
note the closing parenthesis that completes the definition. 

Listing 13. The last part of CREATE TABLE specifies table-level information, including row rules and 
additional indexes. 

 [, PRIMARY KEY PrimaryKeySpec ] 
 [, UNIQUE UniqueKeySpec ] 
 [, FOREIGN KEY ForeignKeySpec REFERENCES ReferencedTableSpec ] 
 [, CHECK lTableRule ]  
) 

While it's generally good practice to base primary keys on a single field, occasionally you 
may need to use a compound key, an index tag based on more than one field (or, in VFP, any 
expression that results in a unique value for each record). The table-level PRIMARY KEY 
clause lets you do that. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 17 of 115 

To specify such a primary key in VFP, you specify the key expression and the tag name. 
Both SQL Server and PostgreSQL consider a primary key a constraint on the table and the 
definition can optionally be preceded with the CONSTRAINT keyword and a name for the 
constraint. (If you don’t specify it, the constraint name is generated automatically.) Then to 
specify the key itself, you follow PRIMARY KEY with parentheses and a comma-separated 
list of fields. Listing 14 shows examples of table-level primary key definitions. 

Listing 14. You can create primary keys that involve multiple fields. 

PRIMARY KEY STR(OrderID) + STR(ProductID) TAG PrimaryKey && VFP 
PRIMARY KEY (orderid, productid) -- SQL Server & PostgreSQL 

Similarly, you can create compound candidate keys, using the UNIQUE clause. The syntax is 
the same as for primary keys, except for the keyword used. You can create multiple 
candidate keys at the table level; just separate the UNIQUE clauses with commas. (For 
examples of candidate key definitions, simply replace PRIMARY KEY with UNIQUE in 
Listing 14.)  

In a database that uses compound primary or candidate keys, you might have relationships 
between tables that involve multiple fields, as well. Use the FOREIGN KEY clause to 
establish the relationship. In VFP, doing so creates an index tag; you must specify the key 
expression and tag name. As with foreign keys created at the field level, the REFERENCES 
clause indicates the table to which this one is related. In VFP, use the TAG keyword after 
REFERENCES to specify the index to which this one relates, if it's not the primary key of the 
referenced table. You can set up multiple relationships in a single CREATE TABLE 
command; separate FOREIGN KEY clauses with commas. Listing 15 shows examples for 
creating a foreign key from multiple fields.  

Listing 15. To specify a foreign key based on multiple columns, you must list the columns (or the expression) 
and the table to which they refer. Here, the compound key is assumed to be the primary key in the 
OrderDetails table. 

FOREIGN KEY STR(OrderID) + STR(ProductID) TAG OrderProduct ; 
  REFERENCES OrderDetails && VFP 
FOREIGN KEY (orderid, productid) REFERENCES orderdetails -- SQL Server & PostgreSQL 

In VFP, in addition to any index tags you define with CREATE TABLE, you can add indexes 
to a table using the INDEX command. 

The final option you have in defining a table is to specify a row-level rule using the CHECK 
clause. It accepts an expression that's evaluated each time you add or modify a record; it 
must evaluate to True. For example, you could use a row-level rule to ensure that all US 
addresses include a zip code (though that might turn out to be a very annoying rule for 
your users), as in Listing 16. 

Listing 16. Table-level rules, specified with the CHECK clause, are tested each time you add or change a 
record. 

CHECK IIF(cCountry="USA", NOT EMPTY(cZip), .T.) ; 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 18 of 115 

  ERROR "US addresses must include a zip code" && VFP 
CHECK (cCountry <> 'USA' OR cZip <> '') -- SQL Server  
CHECK ("cCountry" <> 'USA' OR "cZip" <> '') -- PostgreSQL 

Removing and deleting tables 

Once a table exists, you can delete it. DROP TABLE removes a table from the database; in 
VFP, it also deletes the table and can put it in the recycle bin. Listing 17 shows the basic 
syntax, which is common to VFP, SQL Server and PostgreSQL, as well as VFP’s extended 
version that also works on free tables and optionally puts the table in the recycle bin. 

Listing 17. Use DROP TABLE to delete a table. 

DROP TABLE TableName -- standard SQL syntax 
DROP TABLE TableName | FileName [ RECYCLE ] && VFP extended syntax 

In VFP, DROP TABLE works on both free tables and tables in a database. For a free table, 
supply the file name, optionally including path. For a database table, make sure the 
database is selected and specify the table name. Add the RECYCLE keyword to send the 
table's files to the recycle bin instead of deleting them. However, if you then restore the 
table, it isn't added back into the database, just put back in the appropriate folder. 

Keep in mind that deleting a table involved in relations and rules can have a bad effect on 
your database. 

Listing 18 shows an example of DROP TABLE. 

Listing 18. Use DROP TABLE to get rid of tables you no longer need.  

DROP TABLE Location 

Changing table structures 

The ALTER TABLE command lets you modify the structure of a table. Though the command 
is quite complex, much of what it does is similar to CREATE TABLE and uses identical or 
similar syntax. 

There are several different ways to use ALTER TABLE. Use the first approach, shown in 
Listing 19, to add fields to the table or, in VFP and SQL Server, to modify the type or size of 
existing fields.  

Listing 19. The first version of ALTER TABLE lets you change existing fields or add new ones. PostgreSQL 
doesn’t allow you to change column definitions this way. 

ALTER TABLE TableName 
  ADD | ALTER [ COLUMN ] FieldName FieldType  
    [ ( nFieldWidth [ , nDecimals ] ) ] 
    [ NULL | NOT NULL ] 
    [ IdentityFieldIndicator ] 
    [ CHECK lFieldRule ] 
    [ DEFAULT eDefaultExpression ] 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 19 of 115 

    [ PRIMARY KEY | UNIQUE ] 
    [ REFERENCES ReferencedTable [ TAG ReferencedColOrTag ] ] 

To add a new field, use the ADD keyword (COLUMN is optional whether you use ADD or 
ALTER) and specify the field exactly as you would in CREATE TABLE. To modify an existing 
field, use the ALTER keyword and specify the complete field definition. When you use this 
form of the command to redefine a field, you must include all the clauses that relate to that 
field; this case is treated as if you'd deleted the field and added it back, except that the data 
in the field is retained (and coerced to the new type, which can have some strange effects). 
Listing 20 shows some simple examples. 

Listing 20. ALTER TABLE lets you add columns and modify the definition of existing columns. 

ALTER TABLE Customer ADD LastUpdated T && VFP 
ALTER TABLE LineItem ALTER Quantity I NOT NULL && VFP 
 
ALTER TABLE Customer ADD LastUpdated DateTime -- SQL Server 
ALTER TABLE LineItem ALTER Quantity Int NOT NULL -- SQL Server 
 
ALTER TABLE "Customer" ADD "LastUpdated" TimeStamp -- PostgreSQL  

In PostgreSQL, to modify the type or size of an existing column, you use the syntax shown 
in Listing 21. You can’t add the other pieces of the column definition in the same clause, 
though you can make multiple changes to a single column in one ALTER TABLE command 
(using the syntax shown in Listing 23). Listing 22 shows the PostgreSQL code for 
changing the Quantity field to Integer. Like SQL Server, PostgreSQL will coerce the data to 
the new type if it can. If that’s not possible, you get an error. You can avoid the error by 
including the USING clause and specifying how to perform the conversion. The simplest 
approach is to simply cast as the new type, which you can do either with the CAST() 
function or using the equivalent :: operator. 

Listing 21. Changing a field type in PostgreSQL requires the TYPE keyword. 

ALTER TABLE TableName 
  ALTER [COLUMN] FieldName [SET DATA] TYPE FieldType  
    [ ( nFieldWidth [ , nDecimals ] ) ] 
    [ USING expression ] 

Listing 22. The TYPE keyword is required to change a field type in PostgreSQL. 

ALTER TABLE "LineItem" ALTER "Quantity" TYPE Integer  

The second way to use ALTER TABLE is to change the characteristics other than type and 
size of individual fields. Listing 23 shows VFP’s syntax for doing so. You can add (SET) or 
remove (DROP) default values and field rules, as well as change the field's relationship with 
nulls. The code in Listing 24 adds a default value to the Quantity field.  

Listing 23. This version of ALTER TABLE changes field characteristics other than type and size. 

ALTER TABLE TableName 
  ALTER [ COLUMN ] FieldName 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 20 of 115 

    [ NULL | NOT NULL ] 
    [ SET DEFAULT uDefaultExpression] 
    [ SET CHECK lFieldRule ] 
    [ DROP DEFAULT ] 
    [ DROP CHECK ] 

Listing 24. You can use ALTER TABLE ALTER COLUMN to add defaults and field rules. 

ALTER TABLE LineItem ALTER COLUMN Quantity SET DEFAULT 0 

SQL Server uses the same syntax to change a column’s NULL status, but has another way to 
handle defaults and rules. PostgreSQL uses the same syntax to add and remove default 
values, and uses similar, but not identical syntax (shown in Listing 25) to change a 
column’s null status. The assumption in PostgreSQL is that columns accept nulls, so the 
command is concerned only with NOT NULL. You have to include either SET or DROP; SET 
here means “do not allow nulls,” while DROP means “allow nulls.” The code in Listing 26 
modifies the Quantity column so that it doesn’t accept nulls. 

Listing 25. As with changing the type or size of a field, PostgreSQL’s way of changing its null status is more 
verbose. 

ALTER TABLE TableName 
  ALTER COLUMN FieldName SET | DROP NOT NULL 

Listing 26. This line of PostgreSQL code sets the Quantity column  

ALTER TABLE LineItem ALTER COLUMN Quantity SET NOT NULL 

SQL Server uses constraints to add or modify defaults, as shown in Listing 27; Listing 28 
shows an example. 

Listing 27. To add a default value to a column in SQL Server, you have to specify a named constraint.  

ALTER TABLE TableName 
  ADD CONSTRAINT ConstraintName DEFAULT DefaultValue FOR FieldName 

Listing 28. This constraint sets the default for the Quantity field to 0 in SQL Server, 

ALTER TABLE LineItem  
  ADD CONSTRAINT Quantity_Def DEFAULT 0 FOR Quantity 

Both SQL Server and PostgreSQL use constraints to add field rules; the syntax is shown in 
Listing 29. Note that nothing about this syntax indicates it applies to a single field rather 
than the table as a whole; that’s determined by the expression inside the parentheses. 
Listing 30 shows an example. 

Listing 29. To add a field rule in SQL Server and PostgreSQL, you add a constraint. 

ALTER TABLE TableName 
  ADD CONSTRAINT ConstraintName CHECK (lFieldRule) 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 21 of 115 

Listing 30. This constraint sets a rule that the quantity field must be non-negative. 

ALTER TABLE LineItem  
  ADD CONSTRAINT Quantity_Rule CHECK (Quantity >= 0) 

To remove a default value in SQL Server, or a field rule in either SQL Server or PostgreSQL, 
you DROP the named constraint; Listing 31 shows the syntax. 

Listing 31. ALTER TABLE DROP CONSTRAINT removes field rules in SQL Server and PostgreSQL, as well as 
SQL Server default values. 

ALTER TABLE TableName 
  DROP CONSTRAINT ConstraintName 

The final thing you can do with ALTER TABLE is change table-level characteristics; the VFP 
syntax in Listing 32. 

Listing 32. To change table-level characteristics in VFP, use this form of ALTER TABLE. 

ALTER TABLE TableName 
  [ DROP [ COLUMN ] FieldName ] 
  [ SET CHECK lTableRule ] 
  [ DROP CHECK ] 
  [ ADD PRIMARY KEY uPrimaryKeyExpression  
    [ [ FOR lPrimaryKeyFilter ] TAG PrimaryKeyTag ] ] 
  [ DROP PRIMARY KEY ] 
  [ ADD UNIQUE uUniqueKeyExpression 
    [ FOR lUniqueKeyFilter ] [ TAG UniqueKeyTag1 ] ] 
  [ DROP UNIQUE TAG UniqueKeyTag2 ] 
  [ ADD FOREIGN KEY [ uForeignKeyExpression ]  
    [ FOR lForeignKeyFilter ] TAG ForeignKeyTag1  
    REFERENCES ReferencedTable [ TAG ReferencedTag ] ] 
  [ DROP FOREIGN KEY TAG ForeignKeyTag2 [ SAVE ] ] 
  [ RENAME COLUMN OldFieldName TO NewFieldName ] 

Use DROP COLUMN (the COLUMN keyword is again optional) to remove fields from the 
table. You can add a record-level rule with SET CHECK or remove an existing record rule 
with DROP CHECK.  

You can add either a primary key or a candidate key or remove primary or candidate keys 
that already exist. One difference between CREATE TABLE and ALTER TABLE is that 
ALTER TABLE lets you add a filter (a FOR condition) to an index tag it creates. Be aware 
that filtered indexes are not part of ANSI SQL, but a VFP-specific feature and that filtered 
indexes are not used for Rushmore optimization.  

You can also establish a persistent relation, creating the necessary tag. Here, too, you can 
filter the tag if you wish. DROP FOREIGN KEY lets you remove a persistent relation; if you 
want to keep the tag on this table that was created for the relation, use the SAVE keyword. 

Finally, you can rename an existing column. If the column is used in a rule or an index 
expression, you'll get an error. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 22 of 115 

Listing 33 shows an example; it adds a table rule that requires the shipping date for an 
order to be the same or later than the order date. 

Listing 33. In VFP, ALTER TABLE lets you modify table-level settings. 

ALTER TABLE Orders SET CHECK (ShipDate >= OrderDate) 

Both SQL Server and PostgreSQL use the same DROP syntax to remove columns. 
PostgreSQL also shares the syntax for renaming a column; SQL Server’s version of ALTER 
TABLE doesn’t have a way to rename an existing column. 

For all the other table-level items (adding a table rule, and adding or removing keys of any 
sort), SQL Server and PostgreSQL use constraints, as in Listing 34. NewTableConstraint is 
the same syntax you’d use to specify the item in CREATE TABLE. Listing 35 shows the 
same example as in Listing 33. 

Listing 34. This form of ALTER TABLE lets you add or remove table rules, or primary, candidate or foreign 
keys to existing tables in SQL Server and PostgreSQL. 

ALTER TABLE TableName 
  ADD CONSTRAINT ConstraintName NewTableConstraint 
 
ALTER TABLE TableName 
  DROP CONSTRAINT ConstraintName 

Listing 35. This code adds a table rule to the Orders table in SQL Server or PostgreSQL. 

ALTER TABLE Orders ADD CONSTRAINT DateCheck CHECK (ShipDate >= OrderDate) 

Each language gives you a way to make (at least some) changes without having to fix 
existing data first. In VFP, the NOVALIDATE clause lets you make pretty much any changes 
without checking that the table now meets all validation rules. SQL Server and PostgreSQL 
let you suspend validation only for rules and foreign keys. In SQL Server, add WITH 
NOCHECK to prevent validation. In PostgreSQL, add NOT VALID for that purpose. While 
preventing validation of existing data can be handy in the middle of a series of 
transformations, be careful because you can end up with invalid data in the table.  

Although you can use a long, complex ALTER TABLE command to make a lot of changes to a 
table at once, you're usually better off using a series of commands to make small changes, 
so that one change doesn't step on another.  

Creating temporary tables 

All three databases let you create temporary tables. They provide an easy way to hold data 
that you don't need to maintain in the long run.  

Temporary tables in VFP 

As noted earlier in this paper (in the “Terminology” section), in VFP, temporary tables are 
called cursors. The SQL SELECT command can create cursors populated with the results of 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 23 of 115 

a query; that use of cursors is covered later in this document. You can also define empty 
cursors and then use them almost exactly like tables. The CREATE CURSOR command, 
shown in Listing 36, lets you define a cursor. 

Listing 36. VFP’s CREATE CURSOR lets you define temporary tables that disappear when you close them. 

CREATE CURSOR Alias  
  [ CODEPAGE = nCodePage ] 
  ( FieldName1 FieldType1 [( nSize1 [ , nDecimals1 ] ) 
    [ NULL | NOT NULL ] 
    [ CHECK lFieldRule1 [ ERROR cRuleText1 ] ] 
    [ AUTOINC [ NEXTVALUE nNextValue [ STEP nStepValue ] ] ] 
    [ DEFAULT eDefault1 ] 
    [ UNIQUE [ COLLATE cCollateSequence ] ] 
    [ NOCPTRANS ] ] 
   [ , Fieldname2 ... ] )  

A cursor cannot be contained in a database, but can use some database features. The 
various clauses have the same meaning for CREATE CURSOR that they do for CREATE 
TABLE. (See "Creating tables" earlier in this document for details.) Note that there are no 
table-level clauses other than CODEPAGE because a cursor isn't stored in a database. 

The command in Listing 37 creates a cursor called Tests, designed to hold the results of 
some timing tests. 

Listing 37. This cursor is designed to hold the results of timing tests. 

CREATE CURSOR Tests ; 
   (nTest N(4), nRecords N(8), nDuration N(8, 3), cMachine C(30), tStamp T) 

Cursors you define with CREATE CURSOR are read-write and behave like tables in almost 
every instance. You can use ALTER TABLE on a cursor once you've created it. 

There are a few commands that expect the name of a table and choke when you specify a 
cursor's name (which is an alias). In such situations, use DBF("alias"). For example, 
suppose you have the cursor called Tests defined in Listing 37, which contains the results 
of some performance tests, and you want to add those results to an existing table called 
Timing. You can do it as in Listing 38. 

Listing 38. To refer to a cursor in a command that requires a table name, use DBF(“alias”). 

APPEND FROM DBF("Tests") 

Temporary tables in SQL Server 

The principal use for temporary tables in VFP, holding data for reporting or other 
processes, isn’t as important in SQL Server (or other back-end databases) because typically, 
the front-end application retrieves such data and stores it locally. Nonetheless, SQL Server 
offers several types of temporary tables, including local temporary tables, global temporary 
tables, and table variables.  



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 24 of 115 

Any table whose name begins with # is a local temporary table, while a table whose name 
begins with ## is a global temporary table, visible from all connections. Both local and 
global temporary tables are created using CREATE TABLE and are dropped at the end of 
the session that created them (except that global temporary tables can’t actually be 
dropped until the last statement accessing the table completes). The code in Listing 39 
creates a local temporary table.  

Listing 39. SQL Server temporary tables are created the same way as permanent tables; starting the name 
with “#” or “##” indicates that it’s temporary. 

CREATE TABLE #Tests  
   (nTest Int, nRecords Int, nDuration Decimal(8, 3),  
    cMachine Char(30), tStamp Datetime) 

Like other variables in SQL Server, table variables are named beginning with @. Rather 
than being established using CREATE TABLE, they’re DEFINEd. Table variables are 
particularly useful for stored procedures and functions. Among other things, SQL Server 
supports table-valued functions that return a table variable. Listing 40 shows a definition 
of a table variable. Table variables are dropped when the variable goes out of scope. 

Listing 40. Table variables let you pass tables to stored procedures and return them from stored functions. 
They’re created with DECLARE rather than CREATE TABLE. 

DECLARE @Tests TABLE 
   (nTest Int, nRecords Int, nDuration Decimal(8, 3),  
    cMachine Char(30), tStamp Datetime) 

Temporary tables in PostgreSQL 

PostgreSQL supports local temporary tables that are closed at the end of the current 
session (or sooner, if you specify). Unlike SQL Server’s temporary tables, a PostgreSQL 
temporary table can have the same name as a permanent table; when such a temporary 
table exists, the permanent table is hidden. 

Temporary tables are created using CREATE TABLE, but with the added keyword 
TEMPORARY (or TEMP) coming between CREATE and TABLE, as in Listing 41. 

Listing 41. To indicate a temporary table in PostgreSQL, you put the keyword TEMPORARY between CREATE 
and TABLE. 

CREATE TEMPORARY TABLE Tests 
   (nTest Integer, nRecords Integer, nDuration Decimal(8, 3),  
    cMachine Character(30), tStamp Timestamp) 

Working with Data 
Once your database (or, in VFP, free table) exists, you can manipulate the data with SQL 
commands. There are four core SQL data manipulation commands: INSERT, UPDATE, 
DELETE and SELECT. The first three manage data; they let you add, modify and remove 
records, respectively. The SELECT command lets you ask questions about your data. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 25 of 115 

Basic data manipulation 

Using the three commands that actually modify data can be quite simple; they also are each 
capable of complex use. In this section, we'll look at the simple forms of each command. 

Adding records 

The SQL INSERT command lets you add a record and populate it in one step.  

In VFP, there are four forms for the simple version of INSERT, shown in Listing 42. The 
first is pure SQL, while the other three offer a combination of SQL and Xbase. Not 
surprising, SQL Server and PostgreSQL support only the first version.  

Listing 42. VFP offers four formats for INSERT that vary based on the source of the data to be added. The SQL 
back-ends support only the first version. 

INSERT INTO TableName [ ( cFieldList ) ] VALUES ( uValueList ) 
INSERT INTO TableName FROM ARRAY aValueArray && VFP only  
INSERT INTO TableName FROM MEMVAR && VFP only 
INSERT INTO TableName FROM NAME oObject && VFP only 

In all four forms, you specify the name of the table to which you're adding a record. In VFP, 
the table is opened in an empty work area, if necessary. (SQL Server and PostgreSQL don’t 
have the same notion of tables being open.) 

In the SQL form of the command, you can specify values for all fields or only a selected 
group. If you omit the list of fields, the comma-separated list following the VALUES 
keyword must include a value for each field. If you specify a list of fields, the list of values 
must match up with the list of fields exactly. 

Listing 43 shows a few lines from the code to create and populate the Chinook database. 
For each of the three databases, the first two insertions into the Album table are shown. 

Listing 43. Adding constant values to a table with INSERT is simple. 

* VFP 
INSERT INTO Album (Title, ArtistId) ; 
  VALUES ('For Those About To Rock We Salute You', 1) 
INSERT INTO Album (Title, ArtistId) ; 
  VALUES ('Balls to the Wall', 2) 
 
-- SQL Server 
INSERT INTO [dbo].[Album] ([AlbumId], [Title], [ArtistId])  
  VALUES (1, N'For Those About To Rock We Salute You', 1); 
INSERT INTO [dbo].[Album] ([AlbumId], [Title], [ArtistId])  
  VALUES (2, N'Balls to the Wall', 2); 
 
-- PostgreSQL 
INSERT INTO "Album" ("AlbumId", "Title", "ArtistId")  
  VALUES (1, N'For Those About To Rock We Salute You', 1); 
INSERT INTO "Album" ("AlbumId", "Title", "ArtistId")  
  VALUES (2, N'Balls to the Wall', 2); 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 26 of 115 

While these examples specify constant values, you can actually specify expressions of any 
sort, including fields from other tables. (In VFP, be aware that INSERT changes work areas 
behind the scenes before the values for the new fields are evaluated. So, if you refer to 
fields from other tables, you must include the appropriate alias. In addition, because fields 
have precedence over variables, if a variable has the same name as a field of the table to 
which you're adding the record, be sure to preface it with m.) 

SQL Server and PostgreSQL let you add multiple records at once with INSERT. To do so, you 
include multiple lists of values, each enclosed in parentheses. Listing 44 inserts the same 
two rows as in Listing 43, but does so in a single command. 

Listing 44. You can add multiple rows at once in SQL Server and PostgreSQL. 

-- SQL Server 
INSERT INTO [dbo].[Album] ([AlbumId], [Title], [ArtistId])  
  VALUES (1, N'For Those About To Rock We Salute You', 1),  
         (2, N'Balls to the Wall', 2); 
 
-- PostgreSQL 
INSERT INTO "Album" ("AlbumId", "Title", "ArtistId")  
  VALUES (1, N'For Those About To Rock We Salute You', 1), 
         (2, N'Balls to the Wall', 2); 

In addition, both SQL Server and PostgreSQL let you specify that a field should contain its 
default value rather than specifying a value for the field. Use the DEFAULT keyword instead 
of specifying a value for the column. You can also specify that an entire record should be 
added with the default value for each column by specifying DEFAULT VALUES rather than a 
list. Listing 45 shows examples of each.  

Listing 45. You can tell SQL Server and PostgreSQL to put the default value in one or more fields of a new 
record. 

-- SQL Server 
INSERT INTO Person (FirstName, LastName, BirthDate, tAdded)  
  VALUES ('John', 'Smith', '9/26/1928', DEFAULT) 
 
-- PostgreSQL 
INSERT INTO person VALUES (DEFAULT, 'Arthur', 'Smith', '9/26/1928',DEFAULT) 
 
-- Both 
INSERT INTO person DEFAULT VALUES 

VFP’s second form of INSERT, which adds records based on array contents, lets you add 
multiple records at once. If the array is two-dimensional, one record is added for each row 
of the array. The columns of the array are matched up with the fields of the record in order; 
that means the data in the array must be in the same order as the fields. 

For example, you might create a cursor to hold file information and populate it as in Listing 
46 (InsertFilesFromArray). 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 27 of 115 

Listing 46. The array form of INSERT lets you add multiple records at once. 

LOCAL aFileList[1,1], nFileCount 
 
CREATE CURSOR Files ; 
  (mFileName M, nFileSize N(12), ; 
   dFileDate D) 
    
nFileCount = ADIR(aFileList) 
INSERT INTO Files FROM ARRAY aFileList 

The MEMVAR form of INSERT (again, available only in VFP) creates a new record and 
stores data into each field for which there is a same-named memory variable. For example, 
if the specified table has fields named cFirst, cMiddle and cLast, and there are variables 
m.cFirst and m.cLast, the value of m.cFirst is stored in the cFirst field and the value of 
m.cLast is stored in the cLast field; with no m.cMiddle variable, the cMiddle field remains 
empty.  

This version of INSERT reflects the old Xbase practice of editing variables rather than 
fields; the addition of buffering in VFP makes this approach nearly obsolete. When it's used 
in new code, it's often in conjunction with the SCATTER MEMVAR command to let you add 
a new record that's similar to an existing record. If the table has any auto-increment fields, 
you must release the corresponding variable created by SCATTER MEMVAR before issuing 
INSERT, as in Listing 47 (InsertFromMemvar). 

Listing 47. INSERT FROM MEMVAR reflects pre-buffering editing practices.  

OPEN DATABASE HOME(2) + "Northwind\Northwind" 
USE Products ORDER ProductNam 
SEEK "CHAI" 
SCATTER MEMVAR 
m.ProductName = "Chai-Green" 
m.UnitsInStock = 0 
m.UnitPrice = $20 
RELEASE m.ProductID 
INSERT INTO Products FROM MEMVAR 

The final version of INSERT available in VFP, using the FROM NAME clause, combines SQL 
with VFP's object-orientation. You provide a variable that refers to an object. A new record 
is added, with data drawn from same-named properties of the specified object. You can 
create the object using SCATTER NAME, and then specify the property values. Listing 48 
(InsertFromObject) has the same results as the previous example, but uses an object rather 
than variables. 

Listing 48. INSERT FROM NAME mixes SQL with OOP to let you add a record based on an object. 

OPEN DATABASE HOME(2) + "Northwind\Northwind" 
USE Products ORDER ProductNam 
SEEK "CHAI" 
SCATTER NAME oProduct 
oProduct.ProductName = "Chai-Green" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 28 of 115 

oProduct.UnitsInStock = 0 
oProduct.UnitPrice = $20 
REMOVEPROPERTY(oProduct, "ProductID") 
INSERT INTO Products FROM NAME oProduct 

Note that, as with INSERT INTO FROM MEMVAR, you need to remove the properties 
associated with auto-increment fields before issuing INSERT. 

Changing existing records 

The SQL UPDATE command lets you change the data in one or more records. You can 
change one or more fields with a single command. SQL UPDATE works much like the Xbase 
REPLACE command. There are a couple of important differences, though. First, REPLACE 
defaults to a single record; that is, if you don't include a FOR or WHILE clause or specify a 
scope such as ALL or REST, REPLACE changes the current record. UPDATE defaults to all 
records; if you don't include a WHERE clause, every record is changed. Second, in VFP, for 
shared tables, REPLACE locks the entire table while UPDATE uses record locks. This means 
REPLACE tends to be faster, but UPDATE raises fewer conflicts. 

Don't confuse this command with the Xbase UPDATE command, which has been obsolete 
pretty much from the day it entered the language. 

The syntax for the simple form of SQL UPDATE is shown in Listing 49. 

Listing 49. SQL's UPDATE command modifies existing data. 

UPDATE TableName1  
       SET FieldName1 = uExpr1 
          [, FieldName2 = uExpr2 [, ... ] ] 
       [ WHERE lFilterCondition ] 

The SET section specifies the fields to be updated and their new values. In SQL Server and 
PostgreSQL, rather than specifying an expression, you can use the DEFAULT keyword to 
indicate that the field should be set to its specified default value. If the field has no specified 
default, it’s set to null. If there’s no default and the field doesn’t support nulls, you get an 
error. 

The WHERE clause determines which records are updated. Any valid logical expression 
may be specified. See “Choosing records,” later in this paper for a detailed look at the 
WHERE clause. 

In Listing 50 (SimpleUpdate), the company field for a Chinook customer is updated using 
the value stored in a variable. 

Listing 50. This code updates the company field for a Chinook customer. 

* VFP 
UPDATE Customer ; 
  SET Company = m.cCompany ; 
  WHERE FirstName = 'Heather' AND LastName = 'Leacock' 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 29 of 115 

 
-- SQL Server 
UPDATE Customer 
  SET Company = @cCompany 
  WHERE FirstName = 'Heather' AND LastName = 'Leacock'; 
 
-- PostgreSQL 
UPDATE public."Customer" 
    SET "Company" = cCompany 
    WHERE "Customer"."FirstName" = 'Heather' AND "Customer"."LastName" = 'Leacock'; 

You can change multiple fields with a single UPDATE command by comma-separating the 
assignments. Listing 51 (MultiFieldUpdate) shows code to update the street address and 
postal code of a Chinook customer. 

Listing 51. To change more than one field at a time with UPDATE, separate the assignments with commas. 

* VFP 
UPDATE Customer ; 
  SET Address = '77 West Underwood Street', ; 
      PostalCode = '32806' ; 
  WHERE CustomerId = 22 
 
-- SQL Server 
UPDATE Customer 
  SET Address = '77 West Underwood Street',  
      PostalCode = '32806' 
  WHERE CustomerId = 22; 
 
-- PostgreSQL 
UPDATE "Customer" 
  SET "Address" = '77 West Underwood Street',  
      "PostalCode" = '32806' 
  WHERE "CustomerId" = 22; 

Removing records 

The third member of the record manipulation gang is DELETE.  

In VFP, like its Xbase equivalent, SQL DELETE marks records for deletion and doesn't 
actually physically remove them; that's left to the PACK command. Deleted records, 
whether marked with Xbase DELETE, SQL Delete, or interactively by users, can be restored 
to full membership in the table using the RECALL command. However, there's no SQL 
equivalent to RECALL or PACK, since the two-step deletion is an Xbase notion. 

In SQL Server and PostgreSQL, deleting a record removes it and there’s no straightforward 
way to restore it. (You may be able to do so by working with the transaction log, but that’s 
not for the faint of heart, and is beyond the scope of this paper.) 

The simple version of DELETE has the syntax shown in Listing 52. The WHERE clause lets 
you determine which records are deleted; it accepts any logical expression.  



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 30 of 115 

Listing 52. The SQL DELETE command deletes records based on their contents. 

DELETE FROM Table 
     [ WHERE lCondition ] 

For example, the command in Listing 53 (DeleteIndia) deletes all customers located in 
India. (To avoid permanently deleting records from the SQL Server or PostgreSQL Chinook 
data, the example code in the materials for this session creates a copy of the Customer table 
and operates on that. In VFP, you can test the command, and then RECALL the records. Of 
course, this approach—simply deleting all customers from a given country—is unlikely to 
be a good way to handle things in an application.) 

Listing 53. The SQL DELETE command lets delete all records that meet specified criteria. In VFP, they’re 
marked for deletion, but remain in the table. 

* VFP 
DELETE FROM Customer ; 
  WHERE UPPER(Country) = "INDIA" 
 
-- SQL Server 
DELETE FROM Customer  
  WHERE UPPER(Country) = 'INDIA'; 
 
-- PostgreSQL 
DELETE FROM "Customer" 
  WHERE UPPER("Country") = 'INDIA'; 

There are some differences between Xbase DELETE and SQL DELETE. The Xbase version 
defaults to NEXT 1, that is, deleting a single record. The SQL version defaults to ALL. In 
addition, in VFP, the SQL DELETE uses record locking, while Xbase DELETE locks the entire 
table if you specify more than one record to be deleted. So, as with changing records, the 
SQL version is likely to run into less contention, but the Xbase version usually has better 
performance in VFP. 

Like UPDATE, the simple version of DELETE doesn't offer much you can't get from Xbase 
commands, but the more complex versions discussed later in this paper (see "Filtering with 
subqueries" and "Correlated deletion," in particular) give you a tremendous amount of 
power. 

Querying data 

For most Xbase developers, the prime motivator for learning SQL is the SELECT command. 
It lets you collect data from one or more tables based on the data values without any of the 
complications of setting relations or managing record pointers. A SQL SELECT command is 
called a query.  

Queries can be simple or complicated. They can return one record or millions. This section 
breaks queries down into their main component parts and shows how it all fits together. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 31 of 115 

The basic syntax for a query is shown in Listing 54. All three versions of SQL have a variety 
of extensions to this syntax, but all support what’s shown here. 

Listing 54. SQL SELECT lets you collect data from multiple tables without worrying about how to find the 
right data. You specify what you want, not how to get it. 

SELECT [ ALL | DISTINCT ] 
         eColumn1 [ AS ColumnName1 ] 
      [, eColumn2 [ AS ColumnName2 ] ... ]  
    FROM Table1 [ [ AS ] LocalAlias1 ] 
           [ [ INNER | LEFT [ OUTER ] | RIGHT [ OUTER ] | FULL [ OUTER ] ] JOIN 
         Table2 [ [ AS ] LocalAlias2 ]  
           [ ... ]  
         [ ON lJoinCondition1 ]  
      | , Table3 [ [ AS ] LocalAlias3 ]  
                 [ ... ] ] 
    [ WHERE lConditions ] 
    [ GROUP BY GroupColumn1 [, GroupColumn2 ... ] ] 
    [ HAVING lGroupFilter ] 
    [ UNION [ ALL | DISTINCT ] SELECT ... ] 
    [ ORDER BY OrderCriteria1 [ ASC | DESC ]  
            [, OrderCriteria2 [ ASC | DESC ] ... ] ] 

Getting started 

The simplest queries extract data from a single table. These queries include only the two 
required sections of the SELECT command, the field list and the FROM clause. In VFP, such 
queries store the results in a cursor named Query, and display them in a BROWSE window.  

In SQL Server and PostgreSQL, what happens to the results depends how you execute the 
query. In their IDEs, the result is simply displayed. If you send the command from another 
language, the result is returned to that language and stored locally. Sending a query to one 
of the engines from VFP using SQLExec puts the results in a cursor (named SQLResult if you 
don’t specify otherwise). 

The field list contains a series of expressions that create the fields in the result. The FROM 
clause lists the table or tables from which data is extracted. VFP opens every table in the 
FROM clause that's not already open and leaves it open.  

For example, the query in Listing 55 (FirstLastOnly) extracts a list of first and last names 
from the Customer table in the Chinook database. Figure 4 shows the VFP result. 

Listing 55. The simplest queries extract one or more fields from a single table. 

* VFP & SQL Server 
SELECT FirstName, LastName FROM Customer 
 
-- PostgreSQL 
SELECT "FirstName", "LastName" FROM "Customer" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 32 of 115 

 

Figure 4. By default, VFP displays query results in a BROWSE window. 

The field list is comma-separated. It can contain fields or expressions. For example, the 
query in Listing 56 (FirstLastCombined) assembles the first and last name into a single 
field. Figure 5 shows partial results in SQL Server. 

Listing 56. The field list of a query can include expressions as well as individual fields. 

* VFP 
SELECT FirstName - (" " + LastName) FROM Customer 
 
* SQL Server 
SELECT RTRIM(FirstName) + ' ' + LastName FROM Customer 
 
* PostgreSQL 
SELECT RTRIM("FirstName") || ' ' || "LastName" FROM "Customer" 

Note that each of the three languages handles concatenation of strings differently. While 
both VFP and SQL Server let you combine strings with the "+" operator, in VFP, you can also 
use the "-" operator, which moves trailing blanks to the end of the combined string. In 
PostgreSQL, the string concatenation operation is "||". 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 33 of 115 

 

Figure 5. You can use an expression in the field list of a query to combine data from multiple fields. 

If you don't specify otherwise, columns have the same name in the result as in the original 
table. Columns created from expressions are handled differently by each language. In VFP, 
they’re given names Exp_1, Exp_2, etc. As you can see in Figure 5, in SQL Server, the columns 
have no name (though if you use SQLExec() to send the query to SQL Server, the columns in 
the resulting cursor are named Exp, Exp1, etc.). In PostgreSQL, the names of such columns 
vary. If there’s something PostgreSQL can grab for a column name, it does; for example, 
with the expression RTRIM(“FirstName”), the resulting column was called rtrim. When that 
strategy fails, the columns are named ?column?; surprisingly, PostgreSQL has no problem 
using that name for multiple result columns, when working interactively. However, when 
you send the query with SQLExec(), VFP intervenes and gives them valid VFP names, 
starting with _column_, _column_1, etc. 

Of course, relying on the name assigned by the database engine isn’t a good idea. It’s much 
better to know what the name of each result field is. You can change the name of a field in 
the result using the AS keyword. 

The query shown in Listing 57 (FirstLastFull) renames the combined field, calling it 
FullName. Figure 6 shows the result in PostgreSQL. 

Listing 57. The AS keyword lets you rename a field or expression in query results. 

* VFP 
SELECT FirstName - (" " + LastName) AS FullName FROM Customer 
 
-- SQL Server 
SELECT RTRIM(FirstName) + ' ' + LastName AS FullName FROM Customer 
 
-- PostgreSQL 
SELECT RTRIM("FirstName") || ' ' || "LastName" AS FullName FROM "Customer" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 34 of 115 

 

Figure 6. You can assign a name to a field using the AS clause. 

The different engines use different approaches to setting the size of a field that’s specified 
by an expression. In VFP, the size of the new field is determined by evaluation of the first 
potential record in the results. As long as the expression is based only on fields, VFP does a 
good job of figuring it out. But if you use IIF() or ICASE() to choose between several 
expressions, the field size may be too small. In that case, you need to use a function like 
PADR() or CAST() to ensure the field is wide enough for all records. 

SQL Server is smarter about this and seems to make the result field large enough to hold 
the result. One exception is when the expression uses the ISNULL() function; that function 
determines its result type, including width, from the first parameter. As in VFP, you can use 
the CAST() function to ensure that the resulting column is wide enough for all results. 

Rather than figure out how long a string might be, PostgreSQL seems to prefer to simply 
convert to text (the equivalent of an Xbase memo field) when faced with a string expression 
where the length isn’t obvious. As Figure 6 shows, in the PostgreSQL version of the query in 
Listing 57, the FullName field is text. As in the other languages, you can use CAST() to 
specify the desired result type. 

Listing 58 (CustomerName) shows a query that pulls the company name, if there is one, 
and otherwise uses the customer’s full name. In each case, CAST() ensures that the result is 
an 80 character field, as Figure 7 demonstrates. 

Listing 58. Rather than letting the SQL engine figure out the type and size of a field in a query result, you can 
use CAST() to specify them. 

* VFP 
SELECT CustomerID, ; 
       CAST(EVL(Company, FirstName - (" " + LastName)) AS C(80)) AS CustName ; 
  FROM Customer 
 
-- SQL Server 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 35 of 115 

SELECT CustomerID,  
       CAST(ISNULL(Company, RTRIM(FirstName) + ' ' + LastName) AS char(80))  
         AS CustName 
  FROM Customer 
 
-- PostgreSQL 
SELECT "CustomerId",  
       Cast(Coalesce("Company", RTRIM("FirstName") || ' ' || "LastName")  
         AS character(80)) AS CustName 
  FROM "Customer" 

 

Figure 7. CAST() lets you determine the type and size of a result field. 

In some situations, you want to include all fields in the result. You can list them 
individually, but another choice is to use the "*" character, as in Listing 59. 

Listing 59. Put an asterisk (*) in the field list to include all fields from a table in the results. 

* VFP and SQL Server 
SELECT * FROM Customer 
 
-- PostgreSQL 
SELECT * FROM "Customer" 

Managing results 

What to do with the results of a query is much more of an issue in VFP than with the back-
end servers. For SQL Server and PostgreSQL, most often, you’ll be sending a query from a 
front-end language and the results will be returned to you in whatever format that front-
end language uses. (For VFP, in the simplest case, that’s a cursor.) In VFP, however, you 
have a variety of options as to what do with the query results. 

All three languages support the INTO clause, which is the SQL way of specifying output. In 
SQL Server and PostgreSQL, the INTO clause must immediately follow the field list. VFP is 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 36 of 115 

more flexible about the order of clauses; there, it’s customary to put INTO at the end of the 
query. 

Managing results in the SQL back-ends 

In SQL Server, INTO is immediately followed by the name of the table in which to put 
results. In PostgreSQL, you can do the same thing, but you can also include the TABLE 
keyword after INTO. Both create the table if it doesn’t already exist and both are capable of 
creating temporary tables this way. In SQL Server, since temporary tables are indicated by 
the table name (see “Temporary tables in SQL Server,” earlier in this paper), you don’t need 
to do anything special. In PostgreSQL, to create a temporary table, include the TEMPORARY 
keyword after INTO (and before the optional TABLE, if you’re including that). Listing 60 
(IntoTemp) shows queries to create a temporary table containing customer first and last 
names in SQL Server and PostgreSQL. 

Listing 60. To store query results in another table, use INTO. 

-- SQL Server 
SELECT FirstName, LastName INTO #NameOnly FROM Customer 
 
-- PostgreSQL 
SELECT "FirstName", "LastName" INTO Temporary "NameOnly" FROM "Customer" 

Managing results in VFP 
VFP requires a keyword after INTO. INTO CURSOR creates a cursor with the name (alias) 
you specify; Listing 61 (IntoTemp) shows an example. INTO TABLE creates a real table 
(saved on disk) with the name and path you provide; the DBF keyword is identical to 
TABLE here.  

Listing 61. The most common place to send query results is to a cursor. 

SELECT FirstName, LastName ; 
  FROM Customer ; 
  INTO CURSOR NameOnly 

VFP also allows you store query results to an array, using INTO ARRAY; the array gets one 
column for each field and one row for each record. This is handy for things like grabbing a 
list of items to appear in a combobox. The vast majority of queries send results either to a 
cursor or an array, with cursor far more usual than array. 

By default, cursors created by SELECT are read-only; add the READWRITE keyword to 
create read-write cursors. 

In some situations for queries involving a single table, rather than actually creating a new 
cursor with its own presence on the disk for query results, VFP may filter the original table 
(the one listed in the FROM clause). Doing so allows the query to run blazingly fast. 
However, such cursors can't be used in subsequent queries or for certain other operations. 
To force VFP to create a distinct cursor for your query results, add the NOFILTER keyword. 
You don't need NOFILTER if you're specifying READWRITE. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 37 of 115 

VFP also supports the TO keyword, modeled on Xbase commands. With TO, you can send 
query results to a file, to the printer or to the main VFP window. The output is formatted 
like that created by the DISPLAY command. When you use TO FILE or TO PRINT, the results 
are also echoed on the screen unless you include the NOCONSOLE clause. Include the 
PLAIN clause to omit the column headings from the results. 

Overall, you're not likely to use the TO output options much. They certainly have no place 
in most applications. TO FILE can be handy for quick-and-dirty interactive operations. 

Choosing records 

If all you could do was copy some fields and expressions from all the records in a single 
table, SQL SELECT wouldn't be worth much time. Fortunately, you can do far more. The 
first interesting thing you can do is limit the set of records in the result. Rather than 
including all records, you can choose records based on their contents using the WHERE 
clause, which is often referred to as the filter clause. 

WHERE filters results much as the FOR clause does for Xbase commands. You specify a 
logical expression, which can be as simple as testing a single logical field or as complicated 
as a massive combination or ANDs and ORs. 

Listing 62 (USACustomers) offers a simple example. It selects those customers in the 
United States. Figure 8 shows partial results; note that some rows and some columns are 
omitted in the figure. 

Listing 62. The WHERE clause limits query results to records matching one or more conditions. 

* VFP & SQL Server 
SELECT * FROM Customer WHERE Country = 'USA' 
 
-- PostgreSQL 
SELECT * FROM "Customer" WHERE "Country" = 'USA'; 

 

Figure 8. Specifying an asterisk in the field list includes all fields in the result. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 38 of 115 

In Listing 63 (USACompanies), only those US customers for which there’s a company name 
are selected: 

Listing 63. The conditions in the WHERE can be simple or complex; multiple conditions can be combined 
with AND and OR. 

* VFP 
SELECT * ; 
  FROM Customer ; 
  WHERE Country = 'USA' ; 
    AND NOT EMPTY(Company) 
 
-- SQL Server 
SELECT * 
  FROM Customer 
  WHERE Country = 'USA' 
    AND Company <> '' ; 
 
-- PostgreSQL 
SELECT * 
  FROM "Customer" 
  WHERE "Country" = 'USA' 
    AND "Company" <> '' ; 

As the VFP example demonstrates, you can use functions in a filter. (You can do so in SQL 
Server and PostgreSQL as well, but it’s not necessary in this particular example.) 

In VFP, however, it's best to avoid functions that accept an alias as a parameter (like 
RECNO() and DELETED()). That's because SELECT opens the tables it needs and may use a 
different alias than you expect. That said, with a query that has only one table in the FROM 
clause, you can use these functions, as long as you don't pass the alias as a parameter. For 
example, the query in Listing 64 works if the Customer table is closed when you execute it, 
but not if the Customer table is already open. 

Listing 64. Using functions that accept an alias as parameter in a VFP query can be risky. 

SELECT * FROM Customer ; 
   WHERE BETWEEN(RECNO("Customer"), 50, 100)  

However, the version in Listing 65 always works. 

Listing 65. When a VFP query involves a single table, you can use functions like RECNO(), as long as you don't 
specify the alias. 

SELECT * FROM Customer ; 
   WHERE BETWEEN(RECNO(), 50, 100) 

The same warning applies to using these functions in the field list. 

SELECT offers several special operators for filters: IN, BETWEEN and LIKE. They provide 
SQL equivalents to the VFP functions INLIST(), BETWEEN(), and LIKE(). 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 39 of 115 

IN lets you check whether the value of an expression is contained in a list of values. The 
query in Listing 66 (NACustomers) chooses all those customers who are in North America, 
that is, Canada, Mexico, or the United States. 

Listing 66. The IN operator lets you specify a list of values to match. 

* VFP & SQL Server 
SELECT * FROM Customer WHERE Country IN ('Canada', 'Mexico', 'USA') 
 
-- PostgreSQL 
SELECT * FROM "Customer" WHERE "Country" IN ('Canada', 'Mexico', 'USA') 

The BETWEEN operator has the same behavior as VFP’s BETWEEN() function; it includes 
all records where the specified expression is between the values indicated. The test is 
inclusive, that is, records with the specified values are included in the results. 

Listing 67 (Invoices2011and2012) shows a query that chooses those invoices with dates 
in 2011 and 2012. 

Listing 67. The BETWEEN operator limits results to those records between the specified values. 

* VFP & SQL Server 
SELECT * FROM Invoice WHERE YEAR(InvoiceDate) BETWEEN 2011 AND 2012 
 
-- PostgreSQL 
SELECT * 
  FROM "Invoice" 
  WHERE date_part('year', "InvoiceDate") BETWEEN 2011 AND 2012 ; 

Note that PostgreSQL’s date_part() function lets you extract part of a date or datetime value 
by specifying which part you want. SQL Server has an analogous function called DatePart(), 
but also supports quite a few specific functions for parsing dates, like the Year() function 
used in the example. 

The SQL LIKE operator lets you compare a string to a template that can include wildcards. 
Include "_" in the string to match a single character; use "%" to match 0 or more characters. 
For example, a template of "Fox%" matches any string beginning "Fox", while "_s_q_l_" 
matches only strings with 7 letters where the second, fourth and sixth letters are "s", "q" 
and "l", respectively.  

The query in Listing 68 (NYPhones) extracts customer phone numbers in the 212 area 
code. 

Listing 68. The LIKE operator matches strings using wildcards. 

* VFP 
SELECT Phone ; 
  FROM Customer ; 
  WHERE Phone LIKE '+1 (212) %' 
 
-- SQL Server 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 40 of 115 

SELECT Phone  
  FROM Customer  
  WHERE Phone LIKE '+1 (212) %' 
 
-- PostgreSQL 
SELECT "Phone"  
  FROM "Customer"  
  WHERE "Phone" LIKE '+1 (212) %' ; 

Eliminating duplicate records 

Occasionally, rather than or in addition to choosing records according to their contents, you 
want to find unique records. That is, you want to eliminate duplicate records from the 
results. Use the DISTINCT keyword to reduce results to unique records.  

For example, the query in Listing 69 (CustomerCountries) gets a list of all the countries 
where customers are located. Without the DISTINCT keyword, each country would be 
listed once for each customer there. 

Listing 69. The DISTINCT keyword eliminates duplicate records. 

* VFP 
SELECT DISTINCT Country ; 
  FROM Customer ; 
  INTO CURSOR csrCustCountries 
 
-- SQL Server 
SELECT DISTINCT Country  
  FROM Customer 
 
-- PostgreSQL 
SELECT DISTINCT "Country" 
  FROM "Customer" 

In VFP and SQL Server, including the DISTINCT keyword sorts the results, as in Figure 9, 
which shows partial results from the query. In PostgreSQL, that’s not the case. (See 
“Ordering data,” later in this document, to learn how to specify the order of query results.) 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 41 of 115 

 

Figure 9. In VFP and SQL Server, using DISTINCT sorts the results. 

When a query includes SELECT DISTINCT, all fields are compared and only records exactly 
matching in all fields are removed. So the query in Listing 70 (CustomerStates) shows 
unique combinations of country and state; Figure 10 shows partial results in SQL Server. 

Listing 70. SELECT DISTINCT applies to all columns, yielding unique combinations of data.  

* VFP 
SELECT DISTINCT Country, State ; 
  FROM Customer ; 
  INTO CURSOR csrCustCountries 
 
-- SQL Server 
SELECT DISTINCT Country, State  
  FROM Customer 
 
-- PostgreSQL 
SELECT DISTINCT "Country", "State" 
  FROM "Customer" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 42 of 115 

 

Figure 10. DISTINCT applies to all fields, so produces unique combinations of data. 

In VFP 9 and SQL Server, you can’t include memo/text fields with DISTINCT; PostgreSQL 
allows text fields in such queries. 

Combining data from multiple tables 

The addition of filters begins to show the power of SELECT, but with only a single table 
involved, SELECT doesn't offer anything you can't do with Xbase filtering. The true power 
of queries comes from their ability to consolidate data from multiple tables without having 
to set relations or deal with record pointers. 

A query can involve many tables. You specify the way data from the tables is matched up 
using join conditions. The most common join condition matches the primary key from one 
table with a foreign key in another. For example, Listing 71 (AlbumsAndArtists) puts each 
album together with the artist who created it by joining the Album and Artist tables. Figure 
11 shows partial results in VFP. 

Listing 71. Join conditions tell how to match records in two tables; the most common matches the primary 
key of one table to a foreign key in the other. 

* VFP 
SELECT Title, Name ; 
  FROM Album ; 
    JOIN Artist ; 
      ON Album.ArtistID = Artist.ArtistID ; 
  INTO CURSOR csrAlbums 
 
-- SQL Server 
SELECT Title, Name  
  FROM Album  
    JOIN Artist  
      ON Album.ArtistID = Artist.ArtistID 
 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 43 of 115 

-- PostgreSQL 
SELECT "Title", "Name" 
  FROM "Album"  
    JOIN "Artist"  
      ON "Album"."ArtistId" = "Artist"."ArtistId" 

 

Figure 11. Joins let you put data from multiple tables into a single result. 

The field list and filter conditions can include fields from any table in the query. If a field 
name is unambiguous (like Title and Name in Listing 71), you can use it without an alias. If 
any field name appears in more than one table listed in the FROM clause, precede it with 
the appropriate alias (as with Album.ArtistID in Listing 71). Similarly, if you want to 
include all fields from a particular table, you can use an asterisk preceded with the 
appropriate alias (like Album.*).  

You can join many tables in a single query. When a query involves more than two tables, 
you have a choice as to how to structure the joins. There are two styles available, nested 
and sequential, and you can mix and match them in a single query. 

Nested joins are most useful when you're dealing with a hierarchy of tables, that is, in 
parent-child-grandchild situations. For example, you might have queries that consolidate 
data from the Customer, Invoice, InvoiceLine and Track tables to put together a list of who 
bought what. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 44 of 115 

With the nested style, you first list all the tables separating them with JOIN and then list all 
the join conditions with a series of ON clauses. The key to reading or writing a nested join is 
to know that it works from the inside out. That is, the last join listed (the last two tables 
named) are matched based on the first ON clause. Then, that result is joined with the third-
to-last table listed based on the second ON clause, and so forth. 

The query in Listing 72 (Orders2012Nested) gathers information about the tracks ordered 
in 2012, using the nested style to join the tables. 

Listing 72. The nested style works best when joining a series of tables with a hierarchical relationship. 

* VFP 
SELECT FirstName, LastName, InvoiceDate, Name ; 
  FROM Customer ; 
    JOIN Invoice ; 
      JOIN InvoiceLine ; 
        JOIN Track ; 
        ON InvoiceLine.TrackId = Track.TrackId ; 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
    ON Customer.CustomerId = Invoice.CustomerId ; 
  WHERE YEAR(InvoiceDate) = 2012 ; 
  INTO CURSOR csrTracksSold 
 
-- SQL Server 
SELECT FirstName, LastName, InvoiceDate, Name 
  FROM Customer 
    JOIN Invoice 
      JOIN InvoiceLine 
        JOIN Track 
        ON InvoiceLine.TrackId = Track.TrackId 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
    ON Customer.CustomerId = Invoice.CustomerId 
  WHERE YEAR(InvoiceDate) = 2012 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", "InvoiceDate", "Name" 
  FROM "Customer" 
    JOIN "Invoice" 
      JOIN "InvoiceLine" 
        JOIN "Track" 
        ON "InvoiceLine"."TrackId" = "Track"."TrackId" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
    ON "Customer"."CustomerId" = "Invoice"."CustomerId" 
  WHERE Date_part('year', "InvoiceDate") = 2012 

Figure 12 shows how the joins and join conditions are matched. First, InvoiceLine and 
Track are joined, using the first ON clause: InvoiceLine.TrackId = Track.TrackId. Then, that 
intermediate result is joined with Invoice using the condition Invoice.InvoiceId = 
InvoiceLine.InvoiceId. Finally, the second intermediate result is joined with Customer, 
based on the condition Customer.CustomerID = Invoice.CustomerID. (In fact, the actual 
order in which the joins are performed can be different from the logical order indicated by 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 45 of 115 

the query itself. When it won't affect the query results, each SQL engine performs joins in 
what it deems the most efficient order.) 

 

Figure 12. Nested joins work from the inside out. Here, the first join performed is between InvoiceLine and 
Track and it uses the condition InvoiceLine.TrackId = Track.TrackId. 

While the nested join style works best for hierarchical data, the sequential style can be 
used in any situation. In the sequential style, you list two tables separated by the JOIN 
keyword and then put the ON clause that shows how to join the tables. To add another 
table, use JOIN, the name of the next table, and another ON clause. 

While nested joins are processed from the inside out, sequential joins are processed from 
the top down. So the first two tables listed are joined based on the first ON condition, then 
that intermediate result is joined with the next table based on the second ON condition, and 
so forth. (As with the nested style, the actual order of the joins may vary for performance 
reasons.) 

Here's the same query as above, gathering information about orders for a single year. The 
version in Listing 73 (Orders2012Sequential) uses the sequential style for joins. 

Listing 73. The sequential style can be used to join any set of tables, including those with hierarchical 
relationships. 

* VFP 
SELECT FirstName, LastName, InvoiceDate, Name ; 
  FROM Customer ; 
    JOIN Invoice ; 
      ON Customer.CustomerId = Invoice.CustomerId ; 
    JOIN InvoiceLine ; 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
    JOIN Track ; 
      ON InvoiceLine.TrackId = Track.TrackId ; 
  WHERE YEAR(InvoiceDate) = 2012 ; 
  INTO CURSOR csrTracksSold 
 
-- SQL Server 
SELECT FirstName, LastName, InvoiceDate, Name 
  FROM Customer 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 46 of 115 

    JOIN Invoice 
      ON Customer.CustomerId = Invoice.CustomerId 
    JOIN InvoiceLine 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
    JOIN Track 
      ON InvoiceLine.TrackId = Track.TrackId 
  WHERE YEAR(InvoiceDate) = 2012 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", "InvoiceDate", "Name" 
  FROM "Customer" 
    JOIN "Invoice" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId" 
    JOIN "InvoiceLine" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
    JOIN "Track" 
      ON "InvoiceLine"."TrackId" = "Track"."TrackId" 
  WHERE Date_part('year', "InvoiceDate") = 2012 

Figure 13 shows the logical order of joins for this query. Customer and Invoice are joined 
first, using the condition Customer.CustomerID = Invoice.CustomerID. Then the result is 
joined with InvoiceLine, based on the condition Invoice.InvoiceId = InvoiceLine.InvoiceId. 
Finally, that result is joined with Track using the last ON condition: InvoiceLine.TrackId = 
Track.TrackId.  

 

Figure 13. Sequential joins are executed from the top down. Here, the first join is between Customer and 
Invoice based on the condition Customer.CustomerID = Invoice.CustomerID. 

Some queries that are hard to write using the nested style are straightforward with the 
sequential. For example, consider a query that collects information about each track. It 
includes the name of the track, the name of the album it comes from, the type of media and 
the genre. In this situation, the Track table is a parent to Album, MediaType and Genre, but 
the three child tables are not related to each other. (I usually refer to this situation as 
"multiple unrelated siblings.") Using the nested style for this query leads to code that's 
hard to read and hard to maintain. Listing 74 (TrackInfoNested) shows one possibility: 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 47 of 115 

Listing 74. For queries involving multiple unrelated siblings, the hierarchical style can be hard to get right 
and hard to read. 

* VFP 
SELECT Track.Name AS TrackName, Album.Title AS AlbumTitle, ; 
       MediaType.Name As MediaName, Genre.Name AS GenreName ; 
  FROM MediaType ; 
    JOIN Album ; 
      JOIN Genre ; 
        JOIN Track ; 
        ON Track.GenreId = Genre.GenreId ; 
      ON Track.AlbumId = Album.AlbumId ; 
    ON Track.MediaTypeId = MediaType.MediaTypeId ; 
  INTO CURSOR csrTracks 
 
-- SQL Server 
SELECT Track.Name AS TrackName, Album.Title AS AlbumTitle,  
       MediaType.Name As MediaName, Genre.Name AS GenreName 
  FROM MediaType 
    JOIN Album 
      JOIN Genre 
        JOIN Track 
        ON Track.GenreId = Genre.GenreId 
      ON Track.AlbumId = Album.AlbumId 
    ON Track.MediaTypeId = MediaType.MediaTypeId 
 
-- PostgreSQL 
SELECT "Track"."Name" AS TrackName, "Album"."Title" AS AlbumTitle,  
       "MediaType"."Name" As MediaName, "Genre"."Name" AS GenreName 
  FROM "MediaType" 
    JOIN "Album" 
      JOIN "Genre" 
        JOIN "Track" 
        ON "Track"."GenreId" = "Genre"."GenreId" 
      ON "Track"."AlbumId" = "Album"."AlbumId" 
    ON "Track"."MediaTypeId" = "MediaType"."MediaTypeId" 

While this query works, it implies that there’s a direct relationship between MediaType and 
Album and between Album and Genre. The sequential version of this query shown in 
Listing 75 (TrackInfoSequential) is much easier to understand. 

Listing 75. The sequential style is a better choice for queries involving multiple, unrelated siblings. 

* VFP 
SELECT Track.Name AS TrackName, Album.Title AS AlbumTitle, ; 
       MediaType.Name As MediaName, Genre.Name AS GenreName ; 
  FROM Track ; 
    JOIN Album ; 
      ON Track.AlbumId = Album.AlbumId ; 
    JOIN MediaType ; 
      ON Track.MediaTypeId = MediaType.MediaTypeId ; 
    JOIN Genre ; 
      ON Track.GenreId = Genre.GenreId ; 
  INTO CURSOR csrTracks 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 48 of 115 

 
-- SQL Server 
SELECT Track.Name AS TrackName, Album.Title AS AlbumTitle,  
       MediaType.Name As MediaName, Genre.Name AS GenreName 
  FROM Track 
    JOIN Album 
      ON Track.AlbumId = Album.AlbumId 
    JOIN MediaType 
      ON Track.MediaTypeId = MediaType.MediaTypeId 
    JOIN Genre 
      ON Track.GenreId = Genre.GenreId 
 
-- PostgreSQL 
SELECT "Track"."Name" AS TrackName, "Album"."Title" AS AlbumTitle,  
       "MediaType"."Name" As MediaName, "Genre"."Name" AS GenreName 
  FROM "Track" 
    JOIN "Album" 
      ON "Track"."AlbumId" = "Album"."AlbumId" 
    JOIN "MediaType" 
      ON "Track"."MediaTypeId" = "MediaType"."MediaTypeId" 
    JOIN "Genre" 
      ON "Track"."GenreId" = "Genre"."GenreId" 

You're not restricted to using either the sequential or the nested style in a query; you can 
mix the two. For example, the query in Listing 76 (Orders2012wTrackInfo) uses both to 
combine the last two examples, producing a list of tracks sold in 2012, including the album, 
genre and media type for each. 

Listing 76. A query can use both sequential and nested joins. For each join, choose the style that makes it 
easiest to read and maintain the query. 

* VFP 
SELECT FirstName, LastName, InvoiceDate, ; 
       Track.Name AS TrackName, Album.Title AS AlbumTitle, ; 
       MediaType.Name As MediaName, Genre.Name AS GenreName ; 
  FROM Customer ; 
    JOIN Invoice ; 
      JOIN InvoiceLine ; 
        JOIN Track ; 
        ON InvoiceLine.TrackId = Track.TrackId ; 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
    ON Customer.CustomerId = Invoice.CustomerId ; 
    JOIN Album ; 
      ON Track.AlbumId = Album.AlbumId ; 
    JOIN MediaType ; 
      ON Track.MediaTypeId = MediaType.MediaTypeId ; 
    JOIN Genre ; 
      ON Track.GenreId = Genre.GenreId ; 
  WHERE YEAR(InvoiceDate) = 2012 ; 
  INTO CURSOR csrTracksSold 
 
-- SQLServer 
SELECT FirstName, LastName, InvoiceDate,  
       Track.Name AS TrackName, Album.Title AS AlbumTitle,  



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 49 of 115 

       MediaType.Name As MediaName, Genre.Name AS GenreName  
  FROM Customer  
    JOIN Invoice  
      JOIN InvoiceLine  
        JOIN Track  
        ON InvoiceLine.TrackId = Track.TrackId  
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId  
    ON Customer.CustomerId = Invoice.CustomerId  
    JOIN Album  
      ON Track.AlbumId = Album.AlbumId  
    JOIN MediaType  
      ON Track.MediaTypeId = MediaType.MediaTypeId  
    JOIN Genre  
      ON Track.GenreId = Genre.GenreId  
  WHERE YEAR(InvoiceDate) = 2012 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", "InvoiceDate",  
       "Track"."Name" AS TrackName, "Album"."Title" AS AlbumTitle,  
       "MediaType"."Name" As MediaName, "Genre"."Name" AS GenreName  
  FROM "Customer"  
    JOIN "Invoice"  
      JOIN "InvoiceLine"  
        JOIN "Track" 
        ON "InvoiceLine"."TrackId" = "Track"."TrackId"  
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId"  
    ON "Customer"."CustomerId" = "Invoice"."CustomerId"  
    JOIN "Album"  
      ON "Track"."AlbumId" = "Album"."AlbumId"  
    JOIN "MediaType"  
      ON "Track"."MediaTypeId" = "MediaType"."MediaTypeId"  
    JOIN "Genre"  
      ON "Track"."GenreId" = "Genre"."GenreId"  
  WHERE date_part('year',"InvoiceDate") = 2012 

The first three joins, which traverse the hierarchy from Customer down to Track, are 
nested. The last three joins, which connect the album, media type and genre to the rest of 
the information, are sequential. Figure 14 shows partial results in SQL Server; VFP returns 
the results in the same order. PostgreSQL returns them in a different order; since the SQL 
standard makes no guarantees about result order unless you specify it (see “Ordering 
data,” later in this paper), that’s acceptable. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 50 of 115 

 

Figure 14. Sometimes, the best way to get the results you want is to combine the nested and sequential join 
styles. 

Outer joins 

All of the multi-table queries in the preceding section include records from one table only if 
a match is found in the other tables. For example, only customers who placed orders in 
2012 appear in the results of Listing 72. Similarly, only those tracks that were ordered in 
that year are included in the results. Such a join, which filters out records without matches, 
is called an inner join. You can actually specify that you want an inner join by including the 
keyword INNER before JOIN. 

There are situations where you want to include the unmatched records, as well. A join that 
includes all the records from one or both of its tables, regardless of matches in the other 
table, is called an outer join. There are three types of outer joins: left joins, right joins and 
full joins. In a left join, all the records from the table listed before the JOIN keyword are 
included, along with whichever records they match from the table after the JOIN keyword; 
use LEFT JOIN or LEFT OUTER JOIN to specify a left join. A right join, indicated by RIGHT 
JOIN or RIGHT OUTER JOIN, is the opposite; the results include all the records from the 
table listed after the JOIN keyword, along with whichever records they match from the 
table listed before the JOIN keyword. A full join includes all the records from both tables, 
making matches where possible; for a full join, use FULL JOIN or FULL OUTER JOIN. 

When you perform an outer join, there may be no values available for some of the fields in 
the field list for some of the records in the result. In that situation, those fields are set to 
null. 

Let's start with a simple example. Suppose we want a list of all employees, along with the 
names of any customers for which the employee is the customer service rep. Listing 77 
(EmpsWCusts) collects that information. Figure 15 shows partial results; Andrew Adams 
and Nancy Edwards aren’t customer service reps, so there’s a single record for each with 
the customer first name and last name columns set to null. 

Listing 77. Outer joins include all the records from at least one table; where no matching record exists, fields 
are set to null.  

* VFP 
SELECT Employee.FirstName, Employee.LastName, ; 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 51 of 115 

       Customer.FirstName, Customer.LastName ; 
 FROM Employee ; 
   LEFT JOIN Customer ; 
     ON Employee.EmployeeId = Customer.SupportRepId ; 
 INTO CURSOR csrEmpsWCusts 
 
-- SQL Server 
SELECT Employee.FirstName, Employee.LastName,  
       Customer.FirstName, Customer.LastName 
 FROM Employee 
   LEFT JOIN Customer 
     ON Employee.EmployeeId = Customer.SupportRepId; 
 
-- PostgreSQL 

SELECT "Employee"."FirstName", "Employee"."LastName",  
       "Customer"."FirstName", "Customer"."LastName" 
  FROM "Employee" 
    LEFT JOIN "Customer" 
    ON "Employee"."EmployeeId" = "Customer"."SupportRepId" 

 

Figure 15. In an outer join, any fields from the “some” side are null where there’s no match. 

There’s an important rule for outer joins when you filter on the "some" table (the one from 
which only some records are included). In that case, you have to move the filter condition 
into the join condition.  

Suppose you want to see all customers along with the dates of any invoices they placed in a 
specified year. You might be inclined to write the query in Listing 78 
(SalesAllCustomersYearFilter). 

Listing 78. When using outer joins, filter conditions may have unexpected results. 

* VFP 
SELECT FirstName, LastName, InvoiceDate ; 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 52 of 115 

  FROM Customer ; 
    LEFT JOIN Invoice ; 
      ON Customer.CustomerId = Invoice.CustomerId ; 
  WHERE YEAR(InvoiceDate) = 2012 ; 
  INTO CURSOR csrCustSales 
 
-- SQL Server 
SELECT FirstName, LastName, InvoiceDate  
  FROM Customer  
    LEFT JOIN Invoice  
      ON Customer.CustomerId = Invoice.CustomerId  
  WHERE YEAR(InvoiceDate) = 2012 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", "InvoiceDate"  
  FROM "Customer"  
    LEFT JOIN "Invoice"  
      ON "Customer"."CustomerId" = "Invoice"."CustomerId"  
  WHERE date_part('year', "InvoiceDate") = 2012 

However, the resulting cursor contains only customers who've placed an order in the 
specified year, with one record for each order in the year. That's because the outer join is 
performed before the filter condition is applied. So Customer and Invoice are joined, 
making sure to include every customer. Then the filter condition removes the records for 
any orders outside the specified year. For any customer who placed no orders in 2012, all 
records are removed. 

To get the desired results, you need the query in Listing 79 (SalesAllCustomersYearJoin), 
with the condition included in the ON clause. 

Listing 79. In some situations involving outer joins, filter conditions need to become part of the join 
condition.  

* VFP 
SELECT FirstName, LastName, InvoiceDate ; 
  FROM Customer ; 
    LEFT JOIN Invoice ; 
      ON Customer.CustomerId = Invoice.CustomerId ; 
      AND YEAR(InvoiceDate) = 2012 ; 
  INTO CURSOR csrCustSales 
 
-- SQL Server 
SELECT FirstName, LastName, InvoiceDate  
  FROM Customer  
    LEFT JOIN Invoice  
      ON Customer.CustomerId = Invoice.CustomerId  
      AND YEAR(InvoiceDate) = 2012 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", "InvoiceDate"  
  FROM "Customer"  
    LEFT JOIN "Invoice"  
      ON "Customer"."CustomerId" = "Invoice"."CustomerId"  



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 53 of 115 

      AND date_part('year', "InvoiceDate") = 2012 

When you run this query, the cursor includes all the records extracted by the previous 
version, but it also has a single record for each customer who didn't place an order in 2012. 
In those records, the InvoiceDate field is set to null. Figure 16 shows partial results (in SQL 
Server). 

 

Figure 16. When you use an outer join, any field from an unmatched record contains Null. 

Once a query includes an outer join, the order of the joins becomes much more significant. 
In order to get accurate results, you may need to perform the joins in a particular order. In 
some situations, you may need to change some inner joins into outer joins to carry 
unmatched results along. 

Listing 80 (AllTrackwSales) gathers all sales for each track. All tracks are listed, even if 
they haven’t been sold. 

Listing 80. To keep records pulled into an outer join from being removed, you may need to use outer joins for 
subsequent joins in the same query. 

* VFP 
SELECT Track.Name, FirstName, LastName ; 
  FROM Track ; 
    LEFT JOIN InvoiceLine ; 
      ON Track.TrackId = InvoiceLine.TrackId ; 
    LEFT JOIN Invoice ; 
      ON InvoiceLine.InvoiceId = Invoice.InvoiceId ; 
    LEFT JOIN Customer ; 
      ON Invoice.CustomerId = Customer.CustomerId ; 
  INTO CURSOR csrAllTrackSales 
 
-- SQL Server 
SELECT Track.Name, FirstName, LastName 
  FROM Track 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 54 of 115 

    LEFT JOIN InvoiceLine 
      ON Track.TrackId = InvoiceLine.TrackId 
    LEFT JOIN Invoice 
      ON InvoiceLine.InvoiceId = Invoice.InvoiceId 
    LEFT JOIN Customer 
      ON Invoice.CustomerId = Customer.CustomerId 
 
-- PostgreSQL 
SELECT "Track"."Name", "FirstName", "LastName" 
  FROM "Track" 
    LEFT JOIN "InvoiceLine" 
      ON "Track"."TrackId" = "InvoiceLine"."TrackId" 
    LEFT JOIN "Invoice" 
      ON "InvoiceLine"."InvoiceId" = "Invoice"."InvoiceId" 
    LEFT JOIN "Customer" 
      ON "Invoice"."CustomerId" = "Customer"."CustomerId" 

To make this query work, the joins between InvoiceLine and Invoice and between Invoice 
and Customer need to be outer joins. Using inner joins would drop the unsold tracks that 
are being carried along. 

You can get the same results with a different query, shown in Listing 81 
(AllTrackwSalesRight). Here, the inner joins are performed first, and the Track table, which 
needs an outer join, is added last. Because it’s now on the right-hand side of the join, the 
query uses a RIGHT JOIN instead of a LEFT JOIN. Figure 17 shows the results from both 
versions of this query. 

Listing 81. The order in which you list joins can be more significant with outer joins. In some cases, you must 
put the joins in a specific order to get the desired results. 

* VFP 
SELECT Track.Name, FirstName, LastName ; 
  FROM Customer ; 
    JOIN Invoice ; 
      ON Invoice.CustomerId = Customer.CustomerId ; 
    JOIN InvoiceLine ; 
      ON InvoiceLine.InvoiceId = Invoice.InvoiceId ; 
    RIGHT JOIN Track ; 
      ON Track.TrackId = InvoiceLine.TrackId ; 
  INTO CURSOR csrAllTrackSales 
 
-- SQL Server 
SELECT Track.Name, FirstName, LastName 
  FROM Customer 
    JOIN Invoice 
      ON Invoice.CustomerId = Customer.CustomerId 
    JOIN InvoiceLine 
      ON InvoiceLine.InvoiceId = Invoice.InvoiceId 
    RIGHT JOIN Track 
      ON Track.TrackId = InvoiceLine.TrackId 
 
-- PostgreSQL 
SELECT "Track"."Name", "FirstName", "LastName" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 55 of 115 

  FROM "Customer" 
    JOIN "Invoice" 
      ON "Invoice"."CustomerId" = "Customer"."CustomerId" 
    JOIN "InvoiceLine" 
      ON "InvoiceLine"."InvoiceId" = "Invoice"."InvoiceId" 
    RIGHT JOIN "Track" 
      ON "Track"."TrackId" = "InvoiceLine"."TrackId" 

 

Figure 17. There can be more than one way to write a query to get correct results. Both Listing 80 and 
Listing 81 produce these results. 

Self-joins 

It’s sometimes necessary to join a table to itself, or to use the same table more than once, to 
get the desired results. Such a case is called a self-join. (Technically, only the first case is a 
self-join, but the same rules apply in both.) 

In order to use the same table more than once in a query, you need to use local aliases. Just 
as you can assign an alias to a table you open with the Xbase USE command, you can assign 
an alias to any table in the query; the alias you assign applies only within that query. The 
local alias follows the table name in the FROM clause; you can, if you choose, use the AS 
keyword between the actual table name and the local alias.  

Once a table has been assigned a local alias, you must use that alias to refer to that table 
elsewhere in the query. The original table name is no longer a valid alias for it. 

The query in Listing 82 (EmpsAndMgrs) shows a classic use of a self-join, handling 
hierarchical data stored in a single table. This query finds the manager for each employee 
by joining the Employee table to itself. Each instance of the table is assigned a local alias, 
Emp for the employee and Mgr for the manager. The table has a ReportsTo field that 
contains the EmployeeId of the employee’s manager, so the two instances of the table are 
joined by matching the employee’s ReportsTo field with the manager’s EmployeeId field. 
The results are shown in Figure 18. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 56 of 115 

Listing 82. Self-joins, with the same table included more than once, are useful with hierarchical data stored in 
a single table. 

* VFP 
SELECT Emp.FirstName AS EmpFirst, Emp.LastName AS EmpLast, ; 
       Mgr.FirstName AS MgrFirst, Mgr.LastName AS MgrLast ; 
  FROM Employee Emp ; 
    JOIN Employee Mgr ; 
      ON Emp.ReportsTo = Mgr.EmployeeId ; 
  INTO CURSOR csrEmpMgrs 
 
-- SQL Server 
SELECT Emp.FirstName AS EmpFirst, Emp.LastName AS EmpLast,  
       Mgr.FirstName AS MgrFirst, Mgr.LastName AS MgrLast 
  FROM Employee Emp 
    JOIN Employee Mgr 
      ON Emp.ReportsTo = Mgr.EmployeeId 
 
-- PostgreSQL 
SELECT emp."FirstName" AS EmpFirst, emp."LastName" AS EmpLast,  
       mgr."FirstName" AS MgrFirst, mgr."LastName" AS MgrLast 
  FROM "Employee" emp 
    JOIN "Employee" mgr 
      ON emp."ReportsTo" = mgr."EmployeeId" 

 

Figure 18. A self-join joins a table to itself. Self-joins are particularly useful for hierarchical data. 

In addition to their use in self-joins, local aliases are handy for dealing with long, unwieldy 
table names; a local alias simply cuts down on the size of the query. 

Cross joins 

The point of join conditions is to make sure query results include only records that actually 
match up. However, it’s possible to create a join without a join condition; such a join is 
called a cross join or a Cartesian join. With a cross join, every record from the first table is 
matched with every record from the second table. That can produce extremely large result 
sets; usually, cross joins are done by accident. 

However, there are some specialized cases where a cross join produces the desired results. 
Most often, these occur in reporting or in populating a data warehouse and involve 
situations where you want to include all combinations of two things that aren’t related. For 
example, for the Chinook data, you might want a report that shows the number of tracks 
sold by genre in each country. If you want to include every combination of genre and 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 57 of 115 

country, not just those that have actual sales, it’ll take a cross-join. However, the complete 
example requires clauses of SELECT we haven’t covered yet in this paper, so for now we’ll 
look only at how to get a list of all countries and all genres. 

In VFP, there are a couple of ways to specify a cross join. First, you can simply put a comma-
separated list of the tables in the FROM clause without using the JOIN keyword, as in 
Listing 83 (CrossJoinNoJoin). Alternatively, you can use JOIN with ON .T., as in Listing 84 
(CrossJoinFilterT). Figure 19 shows partial results. 

Listing 83. One way to do a cross join in VFP is to comma-separate the tables after the FROM keyword. 

SELECT DISTINCT Country ; 
   FROM Customer ; 
   INTO CURSOR csrCountries 
    
SELECT Country, Name AS GenreName ; 
   FROM csrCountries, Genre ; 
   INTO CURSOR csrCntryGenre 

Listing 84. You can also specify a cross join by using .T. as the join condition. 

SELECT DISTINCT Country ; 
   FROM Customer ; 
   INTO CURSOR csrCountries 
    
SELECT Country, Name AS GenreName ; 
   FROM csrCountries ; 
     JOIN Genre ; 
       ON .T. ; 
   INTO CURSOR csrCntryGenre    



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 58 of 115 

 

Figure 19. A cross join matches every record in the first table with each record in the second table. 

For the servers, cross joins are much easier. You use the CROSS JOIN keyword and omit the 
ON section. Listing 85 (CrossJoin) shows the same example as above for SQL Server and 
PostgreSQL.  

Listing 85. The CROSS JOIN keyword lets you do cross joins in SQL Server and PostgreSQL.  

-- SQL Server 
SELECT DISTINCT Country  
   INTO #csrCountries 
   FROM Customer; 
    
SELECT Country, Name AS GenreName  
   FROM #csrCountries  
     CROSS JOIN Genre; 
 
-- PostgreSQL 
SELECT DISTINCT "Country"  
   INTO TEMPORARY csrcountries 
   FROM "Customer"; 
    
SELECT "Country", "Name" AS GenreName  
   FROM csrcountries  
     CROSS JOIN "Genre"; 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 59 of 115 

I would not actually do this query as shown. There are better ways to collect the list of 
countries than storing it in a temporary table or cursor, but they require the use of 
subqueries (covered in “Working with subqueries,” later in this paper). 

Ordering data 

As noted earlier, query results can be randomly ordered; in most cases, you can't predict 
the order in which the records will appear. Sometimes, that doesn't matter; when it does, 
the ORDER BY clause lets you specify how query results should be ordered. 

The ORDER BY clause lists one or more fields in the result or from the source tables. A field 
can be listed by name or, for those in the result, by its numeric position. For example, the 
query in Listing 86 (Orders2012Sorted) lists tracks ordered in 2012, sorting by customer 
and track; Figure 20 shows partial results in SQL Server. 

Listing 86. The ORDER BY clause lets you sort query results based on data in the source and result tables. 

* VFP 
SELECT FirstName, LastName, InvoiceDate, Name ; 
  FROM Customer ; 
    JOIN Invoice ; 
    ON Customer.CustomerId = Invoice.CustomerId ; 
      JOIN InvoiceLine ; 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
    JOIN Track ; 
    ON InvoiceLine.TrackId = Track.TrackId ; 
  WHERE YEAR(InvoiceDate) = 2012 ; 
  ORDER BY LastName, FirstName, Name ; 
  INTO CURSOR csrTracksSold 
 
-- SQL Server 
SELECT FirstName, LastName, InvoiceDate, Name 
  FROM Customer 
    JOIN Invoice 
    ON Customer.CustomerId = Invoice.CustomerId 
      JOIN InvoiceLine 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
    JOIN Track 
    ON InvoiceLine.TrackId = Track.TrackId 
  WHERE YEAR(InvoiceDate) = 2012 
  ORDER BY LastName, FirstName, Name 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", "InvoiceDate", "Name" 
  FROM "Customer" 
    JOIN "Invoice" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId" 
    JOIN "InvoiceLine" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
    JOIN "Track" 
      ON "InvoiceLine"."TrackId" = "Track"."TrackId" 
  WHERE Date_part('year', "InvoiceDate") = 2012 
  ORDER BY "LastName", "FirstName", "Name" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 60 of 115 

 

Figure 20. You can specify how query results are sorted by including the ORDER BY clause 

Listing 87 gives the same results, but uses numbers in the ORDER BY clause. 

Listing 87. The ORDER BY clause can use either field names or the position of the field in the field list. 

* VFP 
SELECT FirstName, LastName, InvoiceDate, Name ; 
  FROM Customer ; 
    JOIN Invoice ; 
    ON Customer.CustomerId = Invoice.CustomerId ; 
      JOIN InvoiceLine ; 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
    JOIN Track ; 
    ON InvoiceLine.TrackId = Track.TrackId ; 
  WHERE YEAR(InvoiceDate) = 2012 ; 
  ORDER BY 2, 1, 4 ; 
  INTO CURSOR csrTracksSold 
 
-- SQL Server 
SELECT FirstName, LastName, InvoiceDate, Name 
  FROM Customer 
    JOIN Invoice 
    ON Customer.CustomerId = Invoice.CustomerId 
      JOIN InvoiceLine 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
    JOIN Track 
    ON InvoiceLine.TrackId = Track.TrackId 
  WHERE YEAR(InvoiceDate) = 2012 
  ORDER BY 2, 1, 4 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", "InvoiceDate", "Name" 
  FROM "Customer" 
    JOIN "Invoice" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 61 of 115 

    JOIN "InvoiceLine" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
    JOIN "Track" 
      ON "InvoiceLine"."TrackId" = "Track"."TrackId" 
  WHERE Date_part('year', "InvoiceDate") = 2012 
  ORDER BY 2, 1, 4 

When the ORDER BY clause lists more than one item, records are first sorted on the first 
field listed. If any records have identical values for that field, those records are sorted based 
on the second field listed. Any records that exactly match in the first two fields listed in 
ORDER BY are then sorted based on the third field, and so on. 

Each item in the ORDER BY list can be applied in either ascending or descending order, 
with ascending the default. Add DESC after the field name to sort in descending order. (You 
can use ASC to indicate ascending order, but it's redundant.) 

Listing 88 (Orders2012SortedRecent.PRG) sorts sales for each customer chronologically 
with newest orders first. Tracks purchased on the same date are sorted alphabetically by 
the name of the track. 

Listing 88. Each field in the ORDER BY clause can be sorted in either ascending or descending order.  

* VFP 
SELECT FirstName, LastName, InvoiceDate, Name ; 
  FROM Customer ; 
    JOIN Invoice ; 
    ON Customer.CustomerId = Invoice.CustomerId ; 
      JOIN InvoiceLine ; 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
    JOIN Track ; 
    ON InvoiceLine.TrackId = Track.TrackId ; 
  WHERE YEAR(InvoiceDate) = 2012 ; 
  ORDER BY LastName, FirstName, InvoiceDate DESC, Name ; 
  INTO CURSOR csrTracksSold 
 
-- SQL Server 
SELECT FirstName, LastName, InvoiceDate, Name 
  FROM Customer 
    JOIN Invoice 
    ON Customer.CustomerId = Invoice.CustomerId 
      JOIN InvoiceLine 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
    JOIN Track 
    ON InvoiceLine.TrackId = Track.TrackId 
  WHERE YEAR(InvoiceDate) = 2012 
  ORDER BY LastName, FirstName, InvoiceDate DESC, Name 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", "InvoiceDate", "Name" 
  FROM "Customer" 
    JOIN "Invoice" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId" 
    JOIN "InvoiceLine" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 62 of 115 

      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
    JOIN "Track" 
      ON "InvoiceLine"."TrackId" = "Track"."TrackId" 
  WHERE Date_part('year', "InvoiceDate") = 2012 
  ORDER BY "LastName", "FirstName", "InvoiceDate" DESC, "Name" 

In general, field names are a better choice than field positions, since positions can change 
as the query is modified. Numbers are useful for ordering by expressions; however, a better 
choice in that case is to rename the expression result with AS and use that field name.  

You can order query results on fields not in the field list, as long as they come from one of 
the tables in the query. However, if more than one table listed in the FROM clause has a 
field of that name, you have to include the alias, as well.  

Filtering based on record order 

Once records in a query result are ordered, you can choose to include only a subset of them 
based on that order. In VFP, you use the TOP keyword to specify how many or what percent 
of the records should be retained. SQL Server also supports TOP, but offers a more complex 
alternative using OFFSET and FETCH. In PostgreSQL, the simple approach uses LIMIT, but 
OFFSET and FETCH are also supported.  

Starting with the simplest case, Listing 89 (Last10Orders2012) keeps only the last 10 
tracks sold in 2012. Figure 21 shows the results; unlike most of the figures in this paper, 
this is the complete result set. Note that TOP goes right after the SELECT keyword, but 
PostgreSQL’s LIMIT goes in the ORDER BY clause. 

Listing 89. The TOP or LIMIT clause lets you keep only a subset of the sorted records. 

* VFP 
SELECT TOP 10 FirstName, LastName, InvoiceDate, Name ; 
  FROM Customer ; 
    JOIN Invoice ; 
    ON Customer.CustomerId = Invoice.CustomerId ; 
      JOIN InvoiceLine ; 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
    JOIN Track ; 
    ON InvoiceLine.TrackId = Track.TrackId ; 
  WHERE YEAR(InvoiceDate) = 2012 ; 
  ORDER BY InvoiceDate DESC ; 
  INTO CURSOR csrTracksSold 
 
-- SQL Server 
SELECT TOP 10 FirstName, LastName, InvoiceDate, Name 
  FROM Customer 
    JOIN Invoice 
    ON Customer.CustomerId = Invoice.CustomerId 
      JOIN InvoiceLine 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
    JOIN Track 
    ON InvoiceLine.TrackId = Track.TrackId 
  WHERE YEAR(InvoiceDate) = 2012 
  ORDER BY InvoiceDate DESC 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 63 of 115 

     
-- PostgreSQL 
SELECT "FirstName", "LastName", "InvoiceDate", "Name" 
  FROM "Customer" 
    JOIN "Invoice" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId" 
    JOIN "InvoiceLine" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
    JOIN "Track" 
      ON "InvoiceLine"."TrackId" = "Track"."TrackId" 
  WHERE Date_part('year', "InvoiceDate") = 2012 
  ORDER BY "InvoiceDate" DESC LIMIT 10 

 

Figure 21. The TOP or LIMIT clause lets you keep only a subset of the records, based on their order. 

In VFP 8 and earlier, a query including TOP N can actually have more than N records in the 
result. That happens if there's a tie at the cut-off point; in that case, all the records with the 
same value for the fields listed in the ORDER BY clause are included in the results. VFP 9 
changes this behavior; when you specify TOP N, the result set has exactly N records, but 
you don’t have any control over which records with the same value are kept. 

SQL Server takes a different approach to ties; you can specify whether ties are included. 
Add WITH TIES after TOP n to indicate that you want all records that match the ordering 
expression for the nth record. For example, if we modify the previous example to use TOP 
12 rather than TOP 10, we get exactly 12 rows in the result, but add WITH TIES, as in 
Listing 90 (Last12OrderswTies), and the result (shown in Figure 22) has 14 records. 

Listing 90. SQL Server gives you an explicit way to handle ties in the TOP clause. 

SELECT TOP 12 WITH TIES FirstName, LastName, InvoiceDate, Name 
  FROM Customer 
    JOIN Invoice 
    ON Customer.CustomerId = Invoice.CustomerId 
      JOIN InvoiceLine 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
    JOIN Track 
    ON InvoiceLine.TrackId = Track.TrackId 
  WHERE YEAR(InvoiceDate) = 2012 
  ORDER BY InvoiceDate DESC 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 64 of 115 

 

Figure 22. When you add WITH TIES to TOP n in SQL Server, all records that match the nth record in the 
ordering expression are included in the result. 

PostgreSQL has no way to handle ties in the LIMIT clause. (However, both SQL Server and 
PostgreSQL provide an alternative way to do this, using the RANK function and the OVER 
clause; see my article 
http://www.tomorrowssolutionsllc.com/Articles/Getting%20the%20Top%20N%20for%
20each%20Group.pdf.) 

In VFP and SQL Server, rather than specifying a particular number of records to return, you 
can also request a certain percentage of the results. Listing 91 (LargestOrders) finds the 
top 15% of invoices by total sale. 

Listing 91. The TOP clause can select a fraction of the records. 

* VFP 
SELECT TOP 15 PERCENT InvoiceId, InvoiceDate, FirstName, LastName, Total ; 
  FROM Invoice ; 
    JOIN Customer ; 
      ON Invoice.CustomerId = Customer.CustomerId ; 
  ORDER BY Total DESC ; 
  INTO CURSOR csrLargestSales 
 
-- SQL Server 
SELECT TOP 15 PERCENT InvoiceId, InvoiceDate, FirstName, LastName, Total 
  FROM Invoice 
    JOIN Customer 
      ON Invoice.CustomerId = Customer.CustomerId 
  ORDER BY Total DESC 

PostgreSQL’s LIMIT clause accepts an optional OFFSET keyword to indicate where to start. 
So rather than always giving you the first n records based on the ordering, you can choose 
n records wherever you want. For example, the query in Listing 92 (Second10Tracks) 
returns the second 10 tracks sold, ordered by customer and track. 

http://www.tomorrowssolutionsllc.com/Articles/Getting%20the%20Top%20N%20for%20each%20Group.pdf
http://www.tomorrowssolutionsllc.com/Articles/Getting%20the%20Top%20N%20for%20each%20Group.pdf


Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 65 of 115 

Listing 92. Adding the OFFSET keyword to PostgreSQL’s LIMIT clause lets you choose a set of records other 
than the first. 

SELECT "FirstName", "LastName", "InvoiceDate", "Name" 
  FROM "Customer" 
    JOIN "Invoice" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId" 
    JOIN "InvoiceLine" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
    JOIN "Track" 
      ON "InvoiceLine"."TrackId" = "Track"."TrackId" 
  WHERE Date_part('year', "InvoiceDate") = 2012 
  ORDER BY "LastName", "FirstName", "Name" LIMIT 10 OFFSET 10 

This facility seems most useful for paging, that is, returning a partial result and then being 
able to request the next partial result in order. Particularly in web applications, such an 
approach is very handy. However, this approach works only when the ORDER BY clause 
provides a unique ordering. If there are ties, you can’t assume that different queries will 
return the ties in the same order. 

Both SQL Server and PostgreSQL offer a newer way to limit the records returned based on 
the order, based on a fairly recent addition to the ANSI standard for SQL. The syntax, shown 
in Listing 93, is rather wordy. ROW and ROWS are synonyms here as are FIRST and NEXT.  

Listing 93. In SQL Server and PostgreSQL, OFFSET and FETCH let you retrieve a subset of records, starting 
anywhere in the result set. 

OFFSET nExpr1 ROW | ROWS 
[ FETCH FIRST | NEXT nExpr2 ROW | ROWS ONLY ] 

As in PostgreSQL’s LIMIT clause, OFFSET indicates the number of records to skip before 
starting to return records. When OFFSET is used without FETCH, all remaining records are 
returned, as in Listing 94 (Orders2012Offset), which starts with the 13th record; partial 
results are shown in Figure 23. 

Listing 94. Using OFFSET without FETCH returns all records after the offset. 

-- SQL Server 
SELECT FirstName, LastName, InvoiceDate, Name 
  FROM Customer 
    JOIN Invoice 
    ON Customer.CustomerId = Invoice.CustomerId 
      JOIN InvoiceLine 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
    JOIN Track 
    ON InvoiceLine.TrackId = Track.TrackId 
  WHERE YEAR(InvoiceDate) = 2012 
  ORDER BY LastName, FirstName, Name  
  OFFSET 12 ROWS 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", "InvoiceDate", "Name" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 66 of 115 

  FROM "Customer" 
    JOIN "Invoice" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId" 
    JOIN "InvoiceLine" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
    JOIN "Track" 
      ON "InvoiceLine"."TrackId" = "Track"."TrackId" 
  WHERE Date_part('year', "InvoiceDate") = 2012 
  ORDER BY "LastName", "FirstName", "Name" 
  OFFSET 12 

 

Figure 23. Because the query specified OFFSET 12, this result set starts with the 13th record that matched the 
query’s filter and order settings. 

When you add FETCH, the query returns only the specified number of records. In Listing 
95 (Orders2012OffsetFetch), the result set starts with the 13th record and includes only 10 
records; the result is shown in Figure 24. 

Listing 95. FETCH limits the number of records in the result set. 

-- SQL Server 
SELECT FirstName, LastName, InvoiceDate, Name 
  FROM Customer 
    JOIN Invoice 
    ON Customer.CustomerId = Invoice.CustomerId 
      JOIN InvoiceLine 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
    JOIN Track 
    ON InvoiceLine.TrackId = Track.TrackId 
  WHERE YEAR(InvoiceDate) = 2012 
  ORDER BY LastName, FirstName, Name  
  OFFSET 12 ROWS FETCH NEXT 10 ROWS ONLY 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", "InvoiceDate", "Name" 
  FROM "Customer" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 67 of 115 

    JOIN "Invoice" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId" 
    JOIN "InvoiceLine" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
    JOIN "Track" 
      ON "InvoiceLine"."TrackId" = "Track"."TrackId" 
  WHERE Date_part('year', "InvoiceDate") = 2012 
  ORDER BY "LastName", "FirstName", "Name" 
  OFFSET 12 FETCH NEXT 10 ROWS ONLY 

 

Figure 24. Use OFFSET plus FETCH to return a limited set of records. 

Specify 0 for OFFSET to use this approach in place of TOP. In addition, both the offset and 
fetch values can be expressions. In PostgreSQL, when you use an expression here, you must 
surround it with parentheses. 

It appears that OFFSET/FETCH doesn’t have the same problem as LIMIT when the ordering 
isn’t unique.  

Consolidating and aggregating results 

While you can collect a great deal of information simply by joining tables, much useful and 
interesting information comes from consolidating data from multiple records into a single 
result record. For example, to find out how much a particular customer has spent, you need 
to sum information from all the Invoice records for that customer. 

The GROUP BY clause lets you consolidate records; you list one or more fields and all 
records that exactly match in those fields are combined into a single record in the result. 
GROUP BY is used in conjunction with the aggregate functions. The most commonly used 
aggregate functions are: COUNT(), SUM(), AVG(), MIN() and MAX(). (Both SQL Server and 
PostgreSQL support a number of additional aggregate functions.) Table 2 shows the 
meaning of each of the common aggregate functions. 

Table 2. The aggregate functions apply to the records in a group, helping you turn multiple records into a 
single result record. 

Function Meaning 
COUNT() Computes the number of records in the group. If an expression is passed, computes the number of 

records in the group for which that expression is not null. Pass * to count all records in the group. 
SUM() Totals the specified expression for the group. Only non-null values are included in the result. 
AVG() Averages the specified expression for the group. Only non-null values are included in the result. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 68 of 115 

Function Meaning 
MIN() Finds the minimum value of the specified expression within the group. Only non-null values are 

considered. 
MAX() Finds the maximum value of the specified expression within the group. Only non-null values are 

considered. 

 
In VFP and PostgreSQL, fields can be listed in GROUP BY either by name or by position.  

Listing 96 (MostRecentSale) finds the date of the most recent purchase for each Chinook 
customer. In VFP and SQL Server, the result of this query is sorted by CustomerId; in 
PostgreSQL, it’s not. If you require it to be sorted, add ORDER BY. Figure 25 shows partial 
results from SQL Server, while Figure 26 shows partial results from PostgreSQL. 

Listing 96. The GROUP BY clause consolidates records based on their data and aggregates results. 

* VFP 
SELECT CustomerId, MAX(InvoiceDate) ; 
  FROM Invoice ; 
  GROUP BY CustomerId ; 
  INTO CURSOR csrMostRecent 
 
-- SQL Server 
SELECT CustomerId, MAX(InvoiceDate)  
  FROM Invoice  
  GROUP BY CustomerId 
 
-- PostgreSQL 
SELECT "CustomerId", MAX("InvoiceDate")  
  FROM "Invoice"  
  GROUP BY "CustomerId" 

 

Figure 25. Partial results from SQL Server for Listing 96. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 69 of 115 

 

Figure 26. Partial results from PostgreSQL for Listing 96. 

A single query can include more than one aggregate function and the parameter to an 
aggregate function can be an expression, not just a field name. The query in Listing 97 
(CustomerSales), which counts the number of tracks ordered and totals the sales for each 
customer in 2012, demonstrates both. Figure 27 shows partial results; once again, VFP and 
SQL Server sort the results as a side effect of the way the grouping is performed. 

Listing 97. Multiple aggregate results can be computed with a single query. 

* VFP 
SELECT CustomerId, COUNT(*) AS nTracks, SUM(Quantity * UnitPrice) AS nTotal ; 
  FROM Invoice ; 
    JOIN InvoiceLine ; 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
  WHERE YEAR(InvoiceDate) = 2012 ; 
  GROUP BY CustomerId ; 
  INTO CURSOR csrCustomerSales 
 
-- SQL Server 
SELECT CustomerId, COUNT(*) AS nTracks, SUM(Quantity * UnitPrice) AS nTotal  
  FROM Invoice  
    JOIN InvoiceLine  
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId  
  WHERE YEAR(InvoiceDate) = 2012 
  GROUP BY CustomerId 
 
-- PostgreSQL 
SELECT "CustomerId", COUNT(*) AS nTracks, SUM("Quantity" * "UnitPrice") AS nTotal 
  FROM "Invoice" 
    JOIN "InvoiceLine" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
  WHERE Date_part('year', "InvoiceDate") = 2012 
  GROUP BY "CustomerId" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 70 of 115 

 

Figure 27. You can include multiple aggregates in a single query. 

It's likely that you really want to include the name of the customer in this query, as well as 
the customer ID. Your first instinct may be to simply add the name fields to the field list and 
the Customer table to the FROM clause to get the results you want, as in Listing 98 
(CustomerSalesWithNameFail). However, the query results in an error in all three 
languages because every field listed in a query that uses GROUP BY must either appear in 
the GROUP BY clause or include one of the aggregate functions. (Note that in VFP, this rule 
wasn’t enforced prior to version 8.) 

Listing 98. Every field in a grouped query must either be listed in GROUP BY or use one of the aggregate 
functions. This query fails. 

* VFP 
SELECT Invoice.CustomerId, FirstName, LastName, ; 
       COUNT(*) AS nTracks, SUM(Quantity * UnitPrice) AS nTotal ; 
  FROM Invoice ; 
    JOIN InvoiceLine ; 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
    JOIN Customer ; 
      ON Invoice.CustomerId = Customer.CustomerId ; 
  WHERE YEAR(InvoiceDate) = 2012 ; 
  GROUP BY Invoice.CustomerId ; 
  INTO CURSOR csrCustomerSales 
 
-- SQL Server 
SELECT Invoice.CustomerId, FirstName, LastName,  
       COUNT(*) AS nTracks, SUM(Quantity * UnitPrice) AS nTotal  
  FROM Invoice  
    JOIN InvoiceLine  
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId  
    JOIN Customer 
      ON Invoice.CustomerId = Customer.CustomerId 
  WHERE YEAR(InvoiceDate) = 2012 
  GROUP BY Invoice.CustomerId 
 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 71 of 115 

-- PostgreSQL 
SELECT "Invoice"."CustomerId", "FirstName", "LastName",  
       COUNT(*) AS nTracks, SUM("Quantity" * "UnitPrice") AS nTotal 
  FROM "Invoice" 
    JOIN "InvoiceLine" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
    JOIN "Customer" 
      ON "Invoice"."CustomerId" = "Customer"."CustomerI 
  WHERE Date_part('year', "InvoiceDate") = 2012 
  GROUP BY "Invoice"."CustomerId" 

While this rule seems unnecessary in a parent-child situation like the one in Listing 98, it's 
designed to prevent you from getting spurious results in other situations. If a query 
includes non-aggregated fields not listed in the GROUP BY clause, how would the SQL know 
which value to choose for that field?  

The solution depends on the situation. When you're dealing with a field or expression that's 
the same for every record in the group, you have two choices: add the field to the GROUP 
BY list or wrap it with one of the aggregate functions.  

Listing 99 (CustomerSalesWithNameGroup) shows the first solution for the query in 
Listing 98; the FirstName and LastName fields have been added to the GROUP BY clause. 
Since the customer name is the same for every record with the same CustomerId, adding 
the field doesn't change the results of grouping. The second approach is shown in Listing 
100 (CustomerSalesWithNameMax); here, the FirstName and LastName fields are 
aggregated with MAX(). Again, since every record in the group has the same value, finding 
the maximum (or minimum) doesn't change the results. (You can apply MIN() and MAX() 
to almost any field type, not just numbers.) Both approaches produce the same results; 
partial results from PostgreSQL are shown in Figure 28.  

Listing 99. One way to handle parent fields in a grouped query is to add them to the GROUP BY clause. 

* VFP 
SELECT Invoice.CustomerId, FirstName, LastName, ; 
       COUNT(*) AS nTracks, SUM(Quantity * UnitPrice) AS nTotal ; 
  FROM Invoice ; 
    JOIN InvoiceLine ; 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
    JOIN Customer ; 
      ON Invoice.CustomerId = Customer.CustomerId ; 
  WHERE YEAR(InvoiceDate) = 2012 ; 
  GROUP BY Invoice.CustomerId, FirstName, LastName ; 
  INTO CURSOR csrCustomerSales 
 
-- SQL Server 
SELECT Invoice.CustomerId, FirstName, LastName,  
       COUNT(*) AS nTracks, SUM(Quantity * UnitPrice) AS nTotal  
  FROM Invoice  
    JOIN InvoiceLine  
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId  
    JOIN Customer 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 72 of 115 

      ON Invoice.CustomerId = Customer.CustomerId 
  WHERE YEAR(InvoiceDate) = 2012 
  GROUP BY Invoice.CustomerId, FirstName, LastName 
 
-- PostgreSQL 
SELECT "Invoice"."CustomerId", "FirstName", "LastName",  
       COUNT(*) AS nTracks, SUM("Quantity" * "UnitPrice") AS nTotal 
  FROM "Invoice" 
    JOIN "InvoiceLine" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
    JOIN "Customer" 
      ON "Invoice"."CustomerId" = "Customer"."CustomerId" 
  WHERE Date_part('year', "InvoiceDate") = 2012 
  GROUP BY "Invoice"."CustomerId", "FirstName", "LastName" 

Listing 100. A second approach for parent fields in a grouped query is to wrap them with MIN() or MAX(). 

* VFP 
SELECT Invoice.CustomerId, MAX(FirstName) AS FirstName, MAX(LastName) AS LastName, ; 
       COUNT(*) AS nTracks, SUM(Quantity * UnitPrice) AS nTotal ; 
  FROM Invoice ; 
    JOIN InvoiceLine ; 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
    JOIN Customer ; 
      ON Invoice.CustomerId = Customer.CustomerId ; 
  WHERE YEAR(InvoiceDate) = 2012 ; 
  GROUP BY Invoice.CustomerId ; 
  INTO CURSOR csrCustomerSales 
 
-- SQL Server 
SELECT Invoice.CustomerId, MAX(FirstName) AS FirstName, MAX(LastName) AS LastName,  
       COUNT(*) AS nTracks, SUM(Quantity * UnitPrice) AS nTotal  
  FROM Invoice  
    JOIN InvoiceLine  
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId  
    JOIN Customer 
      ON Invoice.CustomerId = Customer.CustomerId 
  WHERE YEAR(InvoiceDate) = 2012 
  GROUP BY Invoice.CustomerId 
 
-- PostgreSQL 
SELECT "Invoice"."CustomerId",  
       MAX("FirstName") AS FirstName, MAX("LastName") AS LastName,  
       COUNT(*) AS nTracks, SUM("Quantity" * "UnitPrice") AS nTotal 
  FROM "Invoice" 
    JOIN "InvoiceLine" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
    JOIN "Customer" 
      ON "Invoice"."CustomerId" = "Customer"."CustomerId" 
  WHERE Date_part('year', "InvoiceDate") = 2012 
  GROUP BY "Invoice"."CustomerId" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 73 of 115 

 

Figure 28. There are two ways to include data from a parent record in an aggregated query. 

When you actually need to choose the right value for additional fields, the problem is a little 
trickier. There are a number of solutions, but most involve sub-queries (see "Working with 
subqueries" later in this document). One solution, however, is to use two queries in 
sequence rather than a single query. The first query figures out which record in a group is 
the one you're looking for, and then the second query extracts data from that record.  

Listing 101 (FirstOrderTwoQueries) shows a two-query solution to finding the first order 
for a given customer and including additional information about the order. The first query 
finds the minimum order date for each customer. The second query joins that result with 
the Customer and Invoice tables and extracts the desired information. Note the unusual 
join condition between Invoice and the result of the first query (called csrMinDate, 
#MinDate, or mindate, depending on the language); if a customer's first two orders were 
placed on the same date, this join condition includes both in the result. Partial results are 
shown in Figure 29. (Be aware that most experts advise staying away from temporary 
tables in SQL Server and PostgreSQL when possible. Thus, the solutions that use subqueries 
are preferred for the SQL engines.) 

Listing 101. To include additional fields from a child record in a grouped query, you can use two queries in 
sequence.  

* VFP 
SELECT CustomerId, MIN(InvoiceDate) AS MinDate ; 
  FROM Invoice  ; 
  GROUP BY CustomerId ; 
  INTO CURSOR csrMinDate 
 
SELECT FirstName, LastName, MinDate, Total ; 
  FROM csrMinDate ; 
    JOIN Invoice ; 
      ON csrMinDate.CustomerId = Invoice.CustomerId ; 
    AND csrMinDate.MinDate = Invoice.InvoiceDate ; 
    JOIN Customer   ; 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 74 of 115 

      ON Customer.CustomerId = Invoice.CustomerId ; 
  ORDER BY LastName, FirstName ; 
  INTO CURSOR csrFirstOrder 
 
-- SQL Server 
SELECT CustomerId, MIN(InvoiceDate) AS MinDate 
  INTO #MinDate 
  FROM Invoice 
  GROUP BY CustomerId; 
 
SELECT FirstName, LastName, MinDate, Total 
  FROM #MinDate 
    JOIN Invoice 
      ON #MinDate.CustomerId = Invoice.CustomerId 
    AND #MinDate.MinDate = Invoice.InvoiceDate 
    JOIN Customer   
      ON Customer.CustomerId = Invoice.CustomerId 
  ORDER BY LastName, FirstName; 
 
DROP TABLE #MinDate 
 
-- PostgreSQL 
SELECT "CustomerId", MIN("InvoiceDate") AS MinDate 
  INTO TEMP mindate 
  FROM "Invoice" 
  GROUP BY "CustomerId"; 
 
SELECT "FirstName", "LastName", mindate, "Total" 
  FROM mindate 
    JOIN "Invoice" 
      ON mindate."CustomerId" = "Invoice"."CustomerId" 
    AND mindate.mindate = "Invoice"."InvoiceDate" 
    JOIN "Customer" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId"  
  ORDER BY "LastName", "FirstName" ; 
 
DROP TABLE mindate 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 75 of 115 

 

Figure 29. You can run two queries in sequence to connect aggregate data with related data. 

While using GROUP BY without any aggregate functions is pretty much meaningless, there 
are situations where you may use aggregate functions without a GROUP BY clause. When a 
query contains any of the aggregate functions and there's no GROUP BY clause, the result 
contains one record with the entire result set aggregated.  

Listing 102 (TotalSales) computes the total number of tracks sold and total price paid for 
the Chinook data. Figure 30 shows the result (in PostgreSQL). 

Listing 102. A query containing aggregate functions and no GROUP BY clause creates a result set with one 
record. 

* VFP 
SELECT SUM(Quantity) AS TracksSold, SUM(Quantity * UnitPrice) AS TotalPrice ; 
  FROM InvoiceLine ; 
  INTO CURSOR csrTotalSales 
 
-- SQL Server 
SELECT SUM(Quantity) AS TracksSold, SUM(Quantity * UnitPrice) AS TotalPrice 
  FROM InvoiceLine 
 
-- PostgreSQL 
SELECT SUM("Quantity") AS trackssold, SUM("Quantity" * "UnitPrice") AS totalprice 
  FROM "InvoiceLine" 

 

Figure 30. A query that contains aggregate functions and no GROUP BY clause produces a one-record result, 
aggregating all the data. 

The COUNT() aggregate function is a little different than the others. You can use it to count 
all records in a group or only those records with a non-null value for a specified expression. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 76 of 115 

To count all records in the group, use COUNT(*), as in several earlier examples (including 
Listing 97). 

However, in some cases, especially when an outer join is involved, using COUNT(*) can give 
spurious results. The problem is that an outer join may create a dummy record, which is 
counted even though it shouldn't be. The query in Listing 103 (OrderCountBad) makes this 
mistake—the count for each customer is at least 1. Figure 31 shows the spurious results; 
look at the records where the first order date is null.  

Listing 103. This query uses COUNT(*), which results in a count of at least 1 for each customer, even those 
with no orders in the specified month. 

* VFP 
SELECT Customer.CustomerId, COUNT(*) AS InvCount, MIN(InvoiceDate) AS MinDate ; 
  FROM Customer ; 
    LEFT JOIN Invoice ; 
      ON Customer.CustomerId = Invoice.CustomerId ; 
      AND YEAR(InvoiceDate) = 2012  ; 
  GROUP BY Customer.CustomerId ; 
  INTO CURSOR csrOrderCount 
 
-- SQL Server 
SELECT Customer.CustomerId, COUNT(*) AS InvCount, MIN(InvoiceDate) AS MinDate 
  FROM Customer 
    LEFT JOIN Invoice 
      ON Customer.CustomerId = Invoice.CustomerId 
      AND YEAR(InvoiceDate) = 2012  
  GROUP BY Customer.CustomerId 
 
-- PostgreSQL 
SELECT "Customer"."CustomerId", COUNT(*) AS InvCount, MIN("InvoiceDate") AS MinDate 
  FROM "Customer" 
    LEFT JOIN "Invoice" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId" 
      AND date_part('year',"InvoiceDate") = 2012  
  GROUP BY "Customer"."CustomerId" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 77 of 115 

 

Figure 31. When you use COUNT(*) with an outer join, you may get incorrect results. Here, the number of 
orders for customer 8, 12 and 14 is 1, though they placed no orders in the specified year. 

Listing 104 (OrderCount) shows the right way to count when an outer join is involved. In 
this case, counting the InvoiceID field works; when a customer has no invoices in the 
specified year, InvoiceID is null, so it's not counted. Figure 32 shows the accurate results. 

Listing 104. To ensure a correct count when outer joins are involved, count a specific field from the table that 
may not have any matches. 

* VFP 
SELECT Customer.CustomerId, COUNT(InvoiceId) AS InvCount,  
       MIN(InvoiceDate) AS MinDate ; 
  FROM Customer ; 
    LEFT JOIN Invoice ; 
      ON Customer.CustomerId = Invoice.CustomerId ; 
      AND YEAR(InvoiceDate) = 2012  ; 
  GROUP BY Customer.CustomerId ; 
  INTO CURSOR csrOrderCount 
 
-- SQL Server 
SELECT Customer.CustomerId, COUNT(InvoiceId) AS InvCount, MIN(InvoiceDate) AS MinDate 
  FROM Customer 
    LEFT JOIN Invoice 
      ON Customer.CustomerId = Invoice.CustomerId 
      AND YEAR(InvoiceDate) = 2012  
  GROUP BY Customer.CustomerId 
 
-- PostgreSQL 
SELECT "Customer"."CustomerId", COUNT("InvoiceId") AS InvCount, MIN("InvoiceDate") AS 
MinDate 
  FROM "Customer" 
    LEFT JOIN "Invoice" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId" 
      AND date_part('year',"InvoiceDate") = 2012  
  GROUP BY "Customer"."CustomerId" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 78 of 115 

 

Figure 32. To count correctly in an outer join situation, specify a field from the “some” table inside COUNT(). 

You can add the DISTINCT keyword to an aggregate function so that it applies only to 
unique values of the specified field. For example, using DISTINCT with COUNT() gives the 
number of unique values of the specified expression.  

Listing 105 (GenresAndTracks) shows the difference between counting distinct genres 
and all genres. The first count, using DISTINCT, computes the number of different genres 
for a particular artist. The second count, without the DISTINCT keyword, simply counts the 
total number of tracks for the artist. (In fact, any field in the Track table could be used in 
the second count, and would give the same results.) Figure 33 shows partial results (in 
VFP); the use of DISTINCT in an aggregate function sorts the results in all three languages.  

Listing 105. The two counts here give different results. 

* VFP 
SELECT ArtistID, COUNT(DISTINCT GenreId) AS Genres, COUNT(GenreId) AS Tracks ; 
  FROM Track ; 
    JOIN Album ; 
      ON Track.AlbumId = Album.AlbumId ; 
  GROUP BY ArtistID ; 
  INTO CURSOR csrGenresAndTracks 
 
-- SQL Server 
SELECT ArtistID, COUNT(DISTINCT GenreId) AS Genres, COUNT(GenreId) AS Tracks 
  FROM Track 
    JOIN Album 
      ON Track.AlbumId = Album.AlbumId 
  GROUP BY ArtistID 
 
-- PostgreSQL 
SELECT "ArtistId", COUNT(DISTINCT "GenreId") AS Genres, COUNT("GenreId") AS Tracks 
  FROM "Track" 
    JOIN "Album" 
      ON "Track"."AlbumId" = "Album"."AlbumId" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 79 of 115 

  GROUP BY "ArtistId" 

 

Figure 33. COUNT(DISTINCT) counts distinct values. COUNT() without DISTINCT counts all non-null values. 

DISTINCT can be used with the other aggregate functions (though it doesn't make a 
difference with MIN() and MAX()). Listing 106 (AveragePrice) computes the average price 
for a track three different ways. The first approach, using DISTINCT, averages all the 
different prices ever used, without any consideration for how many times a particular price 
was applied. The second approach is order-based; it averages the unit price for a product 
across all the orders for that product. The third approach, which doesn't use the 
AVERAGE() function, computes the average price actually paid, by totaling the amount of 
money charged for the product and dividing by the number of units sold. It happens that 
for the Chinook data, the three are the same for every product, but it’s easy to imagine that 
not being the case, because tracks go on sale or prices rise over time. 

Listing 106. In this query, three different average prices are computed for each product: the average of the 
various unit prices used, the average weighted by the number of line items using a particular average price, 
and the actual average price received based on the number of each product sold. 

* VFP 
SELECT TrackId, AVG(DISTINCT UnitPrice) AS AvgUsed, ; 
       AVG(UnitPrice) AS AvgCharged, ; 
       SUM(Quantity * UnitPrice)/SUM(Quantity) AS AvgReceived ; 
  FROM InvoiceLine ; 
  GROUP BY TrackId ; 
  INTO CURSOR csrAvgPrice 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 80 of 115 

 
-- SQL Server 
SELECT TrackId, AVG(DISTINCT UnitPrice) AS AvgUsed, 
       AVG(UnitPrice) AS AvgCharged, 
       SUM(Quantity * UnitPrice)/SUM(Quantity) AS AvgReceived 
  FROM InvoiceLine 
  GROUP BY TrackId 
 
-- PostgreSQL 
SELECT "TrackId", AVG(DISTINCT "UnitPrice") AS AvgUsed, 
       AVG("UnitPrice") AS AvgCharged, 
       SUM("Quantity" * "UnitPrice")/SUM("Quantity") AS AvgReceived 
  FROM "InvoiceLine" 
  GROUP BY "TrackId" 

In VFP, only one aggregate function in a query can include DISTINCT. Attempting to use 
more than one generates error 1819, "SQL: DISTINCT is invalid." SQL Server and 
PostgreSQL don’t have that limitation. 

Filtering aggregated data 

Once you've consolidated records, you may want to eliminate some of them from the query 
result. The HAVING clause lets you filter after grouping. While HAVING can accept 
conditions based on both original and aggregated data, it's generally a bad idea to put 
conditions there that aren't based on aggregated data. The HAVING clause can't use 
existing indexes (since it operates on grouped data), so filtering original data at this point is 
normally slower than filtering that data in the WHERE clause. 

The query in Listing 107 (LongAlbums) calculates the length of each album by summing 
the track lengths and then keeps only those albums that are a million milliseconds or more. 
Figure 34 shows partial results. 

Listing 107. The HAVING clause lets you filter based on the results of aggregation. 

* VFP 
SELECT Album.AlbumId, Title, SUM(Milliseconds) AS AlbumLength ; 
  FROM Album ; 
    JOIN Track ; 
      ON Album.AlbumId = Track.AlbumId ; 
  GROUP BY Album.AlbumId, Title ; 
  HAVING SUM(Milliseconds) > 1000000 ; 
  INTO CURSOR csrLongAlbums 
 
-- SQL Server 
SELECT Album.AlbumId, Title, SUM(Milliseconds) AS AlbumLength 
  FROM Album 
    JOIN Track  
      ON Album.AlbumId = Track.AlbumId 
  GROUP BY Album.AlbumId, Title 
  HAVING SUM(Milliseconds) > 1000000 
 
-- PostgreSQL 
SELECT "Album"."AlbumId", "Title", SUM("Milliseconds") AS albumlength 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 81 of 115 

  FROM "Album" 
    JOIN "Track"  
      ON "Album"."AlbumId" = "Track"."AlbumId" 
  GROUP BY "Album"."AlbumId", "Title" 
  HAVING SUM("Milliseconds") > 1000000 

 

Figure 34. The HAVING clause lets you filter based on the results of aggregation. 

In VFP, the HAVING clause can refer to fields either by name or by using the expression that 
created the field. So, the query in Listing 108 (LongAlbumsAlt) produces the same result as 
the previous example. 

Listing 108. In VFP, you can use the name assigned to an aggregated result in the HAVING clause. 

SELECT Album.AlbumId, Title, SUM(Milliseconds) AS AlbumLength ; 
  FROM Album ; 
    JOIN Track ; 
      ON Album.AlbumId = Track.AlbumId ; 
  GROUP BY Album.AlbumId, Title ; 
  HAVING AlbumLength > 1000000 ; 
  INTO CURSOR csrLongAlbums 

Because HAVING accepts expressions, you can actually filter on conditions not 
corresponding to fields in the result. For example, Listing 109 (AllTracksLong) looks for 
albums where all tracks are more than 10 minutes (600,000ms) long. Figure 35 shows the 
results. 

Listing 109. The HAVING clause can filter on conditions not stored in the result. 

* VFP 
SELECT Album.AlbumId, Title, SUM(Milliseconds) AS AlbumLength, ; 
       COUNT(TrackId) AS Tracks ; 
  FROM Album ; 
    JOIN Track  ; 
      ON Album.AlbumId = Track.AlbumId ; 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 82 of 115 

  GROUP BY Album.AlbumId, Title ; 
  HAVING MIN(Milliseconds) > 600000 ; 
  INTO CURSOR csrAllTracksLong 
 
-- SQL Server 
SELECT Album.AlbumId, Title, SUM(Milliseconds) AS AlbumLength, 
       COUNT(TrackId) AS Tracks 
  FROM Album 
    JOIN Track  
      ON Album.AlbumId = Track.AlbumId 
  GROUP BY Album.AlbumId, Title 
  HAVING MIN(Milliseconds) > 600000 
 
-- PostgreSQL 
SELECT "Album"."AlbumId", "Title", SUM("Milliseconds") AS AlbumLength, 
       COUNT("TrackId") AS Tracks 
  FROM "Album" 
    JOIN "Track"  
      ON "Album"."AlbumId" = "Track"."AlbumId" 
  GROUP BY "Album"."AlbumId", "Title" 
  HAVING MIN("Milliseconds") > 600000 

 

Figure 35. You can even use HAVING to filter on aggregate results that don’t appear in the field list. Here, only 
“albums” where every track is more than 10 minutes are included. 

The conditions in HAVING can use multiple aggregate results. For example, I used the query 
in Listing 110 (AnyPriceDiff) to confirm that there were no records where the three 
average prices computed by the query in Listing 106 differed.  

Listing 110. A HAVING clause can refer to more than one aggregate result. 

* VFP 
SELECT TrackId, AVG(DISTINCT UnitPrice) AS AvgUsed, ; 
       AVG(UnitPrice) AS AvgCharged, ; 
     SUM(Quantity * UnitPrice)/SUM(Quantity) AS AvgReceived ; 
  FROM InvoiceLine ; 
  GROUP BY TrackId ; 
  HAVING AvgUsed <> AvgCharged OR AvgCharged <> AvgReceived ; 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 83 of 115 

  INTO CURSOR csrAvgPrice 
 
-- SQL Server 
SELECT TrackId, AVG(DISTINCT UnitPrice) AS AvgUsed, 
       AVG(UnitPrice) AS AvgCharged, 
     SUM(Quantity * UnitPrice)/SUM(Quantity) AS AvgReceived 
  FROM InvoiceLine 
  GROUP BY TrackId 
  HAVING AVG(DISTINCT UnitPrice) <> AVG(UnitPrice)  
      OR AVG(UnitPrice) <> SUM(Quantity * UnitPrice)/SUM(Quantity); 
 
-- PostgreSQL 
SELECT "TrackId", AVG(DISTINCT "UnitPrice") AS AvgUsed, 
       AVG("UnitPrice") AS AvgCharged, 
       SUM("Quantity" * "UnitPrice")/SUM("Quantity") AS AvgReceived 
  FROM "InvoiceLine" 
  GROUP BY "TrackId" 
  HAVING AVG(DISTINCT "UnitPrice") <> AVG("UnitPrice") 
      OR AVG("UnitPrice") <> SUM("Quantity" * "UnitPrice")/SUM("Quantity") 

Combining query results 

SELECT's JOIN clause (described in "Combining data from multiple tables" earlier in this 
document) lets you create records that contain data from multiple tables. In some cases, 
each record you want comes from one table or a group of tables, but several different tables 
or groups of tables contain the original data.  

For example, in the Chinook database, two different tables (Customer and Employee) both 
contain information about people. If you want to create a single list of people (as you might 
for a holiday card list), you need the data from both. 

The UNION keyword lets you combine the results of two or more queries into a single 
result set. You write each individual query as you normally would (with the exception 
noted below) and then put the UNION keyword between them. 

For example, Listing 111 (AllPeople) gets the names and addresses of all of the Chinook 
customers and employees. In this case, the two queries comprising the UNION are identical 
except for the source table. 

Listing 111. The UNION keyword lets you combine the results of several queries into a single result. 

* VFP 
SELECT FirstName, LastName, ; 
       Address, City, State, ; 
       Country, PostalCode ; 
  FROM Customer ; 
UNION  ; 
SELECT FirstName, LastName, ; 
       Address, City, State, ; 
       Country, PostalCode ; 
  FROM Employee ; 
  INTO CURSOR csrPeople 
 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 84 of 115 

-- SQL Server 
SELECT FirstName, LastName,  
       Address, City, State,  
       Country, PostalCode 
  FROM Customer 
UNION  
SELECT FirstName, LastName,  
       Address, City, State,  
       Country, PostalCode 
  FROM Employee 
 
-- PostgreSQL 
SELECT "FirstName", "LastName",  
       "Address", "City", "State",  
       "Country", "PostalCode" 
  FROM "Customer" 
UNION  
SELECT "FirstName", "LastName",  
       "Address", "City", "State",  
       "Country", "PostalCode" 
  FROM "Employee" 

The ORDER BY clause belongs to the overall results in a UNIONed query. That is, the 
individual queries in the UNION can't use ORDER BY. Instead, you put it at the end to order 
the results. 

By default, UNION eliminates duplicate records in the results. (In VFP and SQL Server, in 
order to do so, it sorts as needed and the results are ordered by the first column.) Be aware 
that all duplicate records (records exactly matching in all fields in the field list) are 
removed, even if they originated in the same individual query. 

In some cases, you may not want to eliminate duplicates. Add the ALL keyword after 
UNION to keep all records.  

You can't combine just any two queries with UNION. Each individual query in the UNION 
must have the same number of items in the field list. Since some fields you want in the 
result may not exist in some of the tables being queried, you may have to include dummy 
fields in the individual queries. These can use constant values, expressions or functions to 
supply data, most often simply an empty value. 

Listing 112 (AllPeopleWCompany) adds the company name to the list of people. The 
Employee table doesn't have that field (of course), so the string ‘Chinook’ is substituted.  

Listing 112. When some fields don't exist for one query in a UNION, you can specify dummy values. 

* VFP 
SELECT FirstName, LastName, Company, ; 
       Address, City, State, ; 
     Country, PostalCode ; 
  FROM Customer ; 
UNION  ; 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 85 of 115 

SELECT FirstName, LastName, 'Chinook', ; 
       Address, City, State, ; 
     Country, PostalCode ; 
  FROM Employee ; 
  INTO CURSOR csrPeople 
 
-- SQL Server 
SELECT FirstName, LastName, Company, 
       Address, City, State,  
     Country, PostalCode 
  FROM Customer 
UNION  
SELECT FirstName, LastName, 'Chinook', 
       Address, City, State,  
     Country, PostalCode 
  FROM Employee 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", "Company", 
       "Address", "City", "State",  
       "Country", "PostalCode" 
  FROM "Customer" 
UNION  
SELECT "FirstName", "LastName", 'Chinook', 
       "Address", "City", "State",  
       "Country", "PostalCode" 
  FROM "Employee" 

In addition to having the same number of fields, corresponding fields must be union-
compatible. In general, this means that they must be of types that can be implicitly 
converted to a common type. In VFP, for example, this means that you can have a memo 
field in one query and a character field in the corresponding field of another; the result will 
contain a memo field. Similarly, you can match a numeric field to an integer field; the result 
will be numeric and large enough to hold the result. Table 3 shows the implicit type 
conversions VFP can perform in a UNION. 

This page shows the rules for implicit type conversion in SQL Server: 
http://tinyurl.com/lreqthg.  

For PostgreSQL, it’s a little more complicated because data types are extensible, but the 
result is pretty similar to those in VFP and SQL Server. 

Table 3. VFP 8 and 9 perform automatic type conversions in UNIONed queries. 

Table 1 Field Type Table 2 Field Type Result Field Type Size considerations 
Character Character Character The larger of the two 

original fields. 
Character Memo Memo  
Character Character Binary Character Binary The larger of the two 

original fields. 
Character Binary Memo Memo  

http://tinyurl.com/lreqthg


Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 86 of 115 

Table 1 Field Type Table 2 Field Type Result Field Type Size considerations 
Character Binary Character Binary Character Binary The larger of the two 

original fields. 
Numeric Numeric Numeric The larger of the two 

original fields. 
Numeric Integer Numeric The larger of 11 and 

the size of the original 
numeric field, with as 
many decimal places 
as in the original 
numeric field. 

Numeric Double Numeric 20 digits with the 
larger number of 
decimal places from 
the original fields. 

Integer Double Double The number of 
decimal places from 
the original double 
field. 

Integer Currency Currency  
Double Double Double The larger number of 

decimal places from 
the original fields. 

Date DateTime DateTime  

 
SQL Server and PostgreSQL support two additional ways to combine queries: INTERSECT 
and EXCEPT. Remembering that SQL is about sets should give a hint as to what INTERSECT 
does. Just as the intersection of two sets includes only those items in both sets, INTERSECT 
returns only the records that appear in both queries.  

The query in Listing 113 (CustInTwoYears) returns the list of customers who placed 
orders in both 2011 and 2012. As with UNION, SQL Server sorts the results, but PostgreSQL 
does not. Figure 36 shows partial results. 

Listing 113. INTERSECT returns only those records that appear in each query. 

-- SQL Server 
SELECT CustomerId  
  FROM Invoice 
  WHERE YEAR(InvoiceDate) = 2011 
INTERSECT 
SELECT CustomerId  
  FROM Invoice 
  WHERE YEAR(InvoiceDate) = 2012 
 
-- PostgreSQL 
SELECT "CustomerId"  
  FROM "Invoice" 
  WHERE date_part('year',"InvoiceDate") = 2011 
INTERSECT 
SELECT "CustomerId"  
  FROM "Invoice" 
  WHERE date_part('year',"InvoiceDate") = 2012 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 87 of 115 

 

Figure 36. The INTERSECT operator combines two queries, including only those records that appear in both 
in the results. This is a partial list of customers who ordered in both 2011 and 2012. 

EXCEPT produces what’s known in set theory as the complement of the two queries, the 
records in the first query that are not in the second query. For example, the query in 
Listing 114 (CustNotInYear) produces a list of all customers who didn’t place any orders in 
2012; the results are shown in Figure 37. 

Listing 114. EXCEPT returns all records produced by the first query that aren’t produced by the second. 

-- SQL Server 
SELECT CustomerId  
  FROM Customer 
EXCEPT 
SELECT CustomerId  
  FROM Invoice 
  WHERE YEAR(InvoiceDate) = 2012 
 
-- PostgreSQL 
SELECT "CustomerId"  
  FROM "Customer" 
EXCEPT 
SELECT "CustomerId"  
  FROM "Invoice" 
  WHERE date_part('year',"InvoiceDate") = 2012 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 88 of 115 

 

Figure 37. EXCEPT includes those records in the first query’s result set hat aren’t in the second query’s result 
set. Here, that’s Customer Ids for those customers who didn’t place an order in 2012. 

Unlike UNION and INTERSECT, the order of the queries matters with EXCEPT. If we reverse 
the order of the queries in the previous example, as in Listing 115, the result is the empty 
set. The first query produces a list of customers who ordered in 2012; the second produces 
a list of all customers. So there are no customers in the first list that aren’t in the second. 

Listing 115. EXCEPT is not commutative. This query produces the empty set because the second query 
includes all customers. 

-- SQL Server 
SELECT CustomerId  
  FROM Invoice 
  WHERE YEAR(InvoiceDate) = 2012 
EXCEPT 
SELECT CustomerId  
  FROM Customer 
 
-- PostgreSQL 
SELECT "CustomerId"  
  FROM "Invoice" 
  WHERE date_part('year',"InvoiceDate") = 2012 
EXCEPT 
SELECT "CustomerId"  
  FROM "Customer" 

You can get the same results as INTERSECT and EXCEPT using a subquery (see the next 
section of this paper, “Working with subqueries”), but the INTERSECT and EXCEPT 
versions are easier to read and maintain. 

Working with subqueries 

A subquery is a query that appears within another SQL command. SELECT, DELETE, and 
UPDATE all support subqueries, though the rules and reasons for using them vary. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 89 of 115 

Some subqueries stand alone; you can run the subquery independent of the command that 
contains it. Other subqueries rely on fields from the containing command—these 
subqueries are said to be correlated. See "Correlation" later in this section. 

Subqueries are enclosed in parenthesis in the containing query. Subqueries can appear in 
the WHERE clause of SELECT, UPDATE and DELETE, in the FROM clause of SELECT, 
UPDATE and DELETE (where they're called derived tables), as well as in the field list of 
SELECT, in the SET clause of UPDATE. In addition, SQL Server and PostgreSQL both support 
Common Table Expressions (CTEs), which let you perform one or more queries as a 
prelude to another SQL command. 

Filtering with subqueries 

The most common use for subqueries is filtering data in the WHERE clause of a SQL 
command. Four special operators (shown in Table 4), as well as the conventional 
operators like = and >, are used to connect the containing command and the subquery. The 
IN operator is probably the most frequently used; it says to include in the result set of the 
containing command all those records where a specified expression is in the subquery 
results. IN is often combined with NOT to operate on all records that are not in the 
subquery results. 

Table 4. These operators let you compare with results of subqueries in the WHERE clause of a SQL command. 

Operator Meaning 
IN Operates on any records in the containing command where the specified expression appears in 

the subquery results. 
EXISTS Operates on any records in the containing command where the subquery produces at least one 

record. 
ALL Used in conjunction with one of the comparison operators (=, <>, <, <=, >, >=), operates on any 

records in the containing command where the specified expression has the specified 
relationship to every record in the subquery result. 

ANY, 
SOME 

Used in conjunction with one of the comparison operators (=, <>, <, <=, >, >=), operates on any 
records in the containing command where the specified expression has the specified 
relationship to at least one record in the subquery result. 

 
One well-known use for a subquery is to let you find all the records in one list that aren't in 
another list. This is the same result that EXCEPT provides. The query in Listing 116 
(CustNotInYearSub) uses a subquery to retrieve a list of all customers who didn't place an 
order in 2012. The subquery builds a list of customers who did order in that year. Figure 
38 shows the results in SQL Server. Interestingly, while SQL Server sorts the results of the 
corresponding query using EXCEPT (Listing 114), it doesn’t sort them in this case. 
However, both VFP and PostgreSQL do. 

Listing 116. The subquery here gets a list of all customers who placed orders in the specified year. The main 
query uses that list to find the reverse—those who didn't order in that year.  

* VFP 
SELECT CustomerId ; 
  FROM Customer ; 
  WHERE CustomerId NOT IN ; 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 90 of 115 

    (SELECT CustomerId ; 
       FROM Invoice ; 
     WHERE YEAR(InvoiceDate) = 2012) ; 
  INTO CURSOR csrCustNotInYear 
 
-- SQL Server 
SELECT CustomerId 
  FROM Customer 
  WHERE CustomerId NOT IN  
    (SELECT CustomerId  
       FROM Invoice  
     WHERE YEAR(InvoiceDate) = 2012); 
 
-- PostgreSQL 
SELECT "CustomerId" 
  FROM "Customer" 
  WHERE "CustomerId" NOT IN  
    (SELECT "CustomerId"  
       FROM "Invoice"  
       WHERE date_part('year', "InvoiceDate") = 2012) 

 

Figure 38. One of the most common uses for subqueries is to find all the records in one table that aren’t in 
another. 

With UPDATE and DELETE, IN lets you act on all the records selected by a subquery. For 
example, the code in Listing 117 (RaisePrices) increases prices by 10% for tracks that are 
on five or more playlists. The subquery creates a list of tracks that are on five or more 
playlists, and then the UPDATE affects only tracks on that list. 

Listing 117. You can use a subquery in UPDATE to determine which records to change. 

* VFP 
UPDATE Track ; 
  SET UnitPrice = 1.1 * UnitPrice ; 
  WHERE TrackId IN ; 
    (SELECT TrackId ; 
     FROM PlaylistTrack ; 
     GROUP BY TrackId ; 
     HAVING COUNT(*) >= 5) 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 91 of 115 

 
-- SQL Server 
SELECT TrackID, UnitPrice 
  FROM Track  
  WHERE TrackId IN  
    (SELECT TrackId  
     FROM PlaylistTrack 
     GROUP BY TrackId 
     HAVING COUNT(*) >= 5) 
 
-- PostgreSQL 
UPDATE "Track" 
  SET "UnitPrice" = 1.1 * "UnitPrice" 
  WHERE "TrackId" IN  
    (SELECT "TrackId"  
     FROM "PlaylistTrack" 
     GROUP BY "TrackId" 
     HAVING COUNT(*) >= 5) 

Correlation 

Many subqueries can be designed that can be run separately from the containing command. 
That is, you can take the subquery and run it as a stand-alone query. 

But sometimes, to get the desired results, you need to refer to a field of a table from the 
containing command in the subquery. Such subqueries are said to be correlated and are 
more likely than stand-alone subqueries to use operators other than IN. 

For example, the query in Listing 118 (FirstOrderCorrelated) offers another solution to the 
problem posed by Listing 101, how to get additional information from a child record when 
performing aggregation. Here, the subquery finds the date of the earliest invoice for a 
specified customer; then the main query retrieves information for any invoice for that 
customer on that date. As in the earlier example, if a customer has multiple orders with that 
timestamp, they’re all included in the results.  

What makes this subquery correlated is the reference to Invoice.CustomerId in its WHERE 
clause. Both the main query and the subquery use the Invoice table; in the subquery, 
there’s a local alias (Inv) for it, so the WHERE clause of the subquery compares the 
CustomerId from the subquery’s copy to the CustomerId from the main query’s copy. 

Listing 118. A correlated subquery here avoids the issue of extracting additional information from a child 
record when grouping. 

* VFP 
SELECT FirstName, LastName, InvoiceDate, Total ; 
  FROM Invoice ; 
    JOIN Customer   ; 
      ON Customer.CustomerId = Invoice.CustomerId ; 
  WHERE InvoiceDate = ; 
    (SELECT MIN(InvoiceDate) FROM Invoice Inv ; 
       WHERE Inv.CustomerId = Invoice.CustomerId) ; 
  ORDER BY LastName, FirstName ; 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 92 of 115 

  INTO CURSOR csrFirstOrder 
 
-- SQL Server 
SELECT FirstName, LastName, InvoiceDate, Total 
  FROM Invoice 
    JOIN Customer   
      ON Customer.CustomerId = Invoice.CustomerId 
  WHERE InvoiceDate =  
    (SELECT MIN(InvoiceDate) FROM Invoice Inv  
       WHERE Inv.CustomerId = Invoice.CustomerId)  
  ORDER BY LastName, FirstName; 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", "InvoiceDate", "Total" 
  FROM "Invoice" 
    JOIN "Customer" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId"  
  WHERE "InvoiceDate" =  
    (SELECT MIN("InvoiceDate") FROM "Invoice" inv  
       WHERE inv."CustomerId" = "Invoice"."CustomerId")  
  ORDER BY "LastName", "FirstName" ; 

Listing 119 (ArtistsWAllTracksLong) combines a correlated subquery with the EXISTS 
operator to build on Listing 109 to retrieve a list of artists who have albums where every 
track is at least 10 minutes. Here, the subquery is the earlier query that produces a list of 
albums where all tracks are long, with the addition of a WHERE clause matching the 
album’s artist to the artist in the main query. The EXISTS keyword in the main query’s 
WHERE clause says to include this artist in the overall results if the subquery produces any 
results for the artist. Figure 39 shows the results. 

Listing 119. Use the EXISTS operator to find records for which the subquery produces results. With EXISTS, 
you'll almost always use a correlated subquery.  

* VFP 
SELECT Name ; 
  FROM Artist ; 
  WHERE EXISTS ; 
    (SELECT Album.AlbumId ; 
        FROM Album ; 
        JOIN Track ; 
          ON Album.AlbumId = Track.AlbumId ; 
    WHERE Album.ArtistId = Artist.ArtistId ; 
     GROUP BY Album.AlbumId ; 
     HAVING MIN(Milliseconds) > 600000) ; 
  INTO CURSOR csrArtistsLong 
 
-- SQL Server 
SELECT Name 
  FROM Artist 
  WHERE EXISTS  
    (SELECT Album.AlbumId  
        FROM Album 
        JOIN Track  



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 93 of 115 

          ON Album.AlbumId = Track.AlbumId 
    WHERE Album.ArtistId = Artist.ArtistId 
      GROUP BY Album.AlbumId 
      HAVING MIN(Milliseconds) > 600000); 
 
-- PostgreSQL 
SELECT "Name" 
  FROM "Artist" 
  WHERE EXISTS 
     (SELECT "Album"."AlbumId" 
  FROM "Album" 
    JOIN "Track"  
      ON "Album"."AlbumId" = "Track"."AlbumId" 
  WHERE "Album"."ArtistId" = "Artist"."ArtistId" 
  GROUP BY "Album"."AlbumId", "Title" 
  HAVING MIN("Milliseconds") > 600000); 

 

Figure 39. The EXISTS operator can be combined with a correlated subquery to find all records for which a 
particular condition is true. 

Derived Tables—Subqueries in FROM 

You can use subqueries in the FROM clause of SELECT, DELETE and UPDATE (though in 
VFP, that’s true only in version 9). The subquery result, which can then be joined with other 
tables, is called a derived table. While you can usually solve the same problems by using a 
series of commands, derived tables often let you perform a process with a single command; 
the single command can be faster than the series it replaces. 

Like any other subquery, a subquery in the FROM clause is enclosed in parentheses. You 
must assign a local alias to the derived table; use the local alias to refer to fields of the 
subquery result in the containing command. Derived tables cannot be correlated; VFP must 
be able to run the subquery before any joins are performed in the containing command. 

One place a derived table is useful is when extracting additional child data after grouping. 
In many cases, the grouping can be performed in a derived table. Listing 120 
(FirstOrderDerived) shows another solution to the problem in Listing 101 and Listing 118. 
The subquery is the first table listed in the FROM clause; it’s the same as the first query in 
the two query solution, except that it doesn’t include INTO to store the results. Instead, a 
local alias is assigned outside the parentheses. The main query is the same as in the two 
query solution, except for the insertion of the derived table. Note also that the subquery is 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 94 of 115 

self-contained enough in this case that both it and the main query can refer to the Invoice 
table without using local aliases and without confusion. 

Listing 120.  A subquery in the FROM clause creates a result on the fly that you can join to other tables in the 
command. 

* VFP 
SELECT FirstName, LastName, MinDate, Total ; 
  FROM ; 
   (SELECT CustomerId, MIN(InvoiceDate) AS MinDate ; 
      FROM Invoice ; 
      GROUP BY CustomerId) csrMinDate; 
    JOIN Invoice ; 
      ON csrMinDate.CustomerId = Invoice.CustomerId ; 
    AND csrMinDate.MinDate = Invoice.InvoiceDate ; 
    JOIN Customer   ; 
      ON Customer.CustomerId = Invoice.CustomerId ; 
  ORDER BY LastName, FirstName ; 
  INTO CURSOR csrFirstOrder 
 
-- SQL Server 
SELECT FirstName, LastName, MinDate, Total 
  FROM  
    (SELECT CustomerId, MIN(InvoiceDate) AS MinDate 
       FROM Invoice 
       GROUP BY CustomerId) MinDate 
    JOIN Invoice 
      ON MinDate.CustomerId = Invoice.CustomerId 
    AND MinDate.MinDate = Invoice.InvoiceDate 
    JOIN Customer   
      ON Customer.CustomerId = Invoice.CustomerId 
  ORDER BY LastName, FirstName; 
 
-- PostgreSQL 
SELECT "FirstName", "LastName", mindate, "Total" 
  FROM  
    (SELECT "CustomerId", MIN("InvoiceDate") AS MinDate 
       FROM "Invoice" 
       GROUP BY "CustomerId") mindate 
    JOIN "Invoice" 
      ON mindate."CustomerId" = "Invoice"."CustomerId" 
    AND mindate.mindate = "Invoice"."InvoiceDate" 
    JOIN "Customer" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId"  
  ORDER BY "LastName", "FirstName" ; 

Derived tables provide one solution to an issue that arises when you need to aggregate data 
from both parent and child tables in a one-to-many relationship. Suppose you want to put 
together a customer summary, showing the number of orders placed by each customer, the 
total amount of those orders and the total number of tracks ordered. Your first attempt 
might look like the query in Listing 121 (InvAndDetailDataWrong).  



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 95 of 115 

Listing 121. When you need to aggregate data from both parent and child records, you might try to do it in a 
single query, but that can let to erroneous results. 

* VFP 
SELECT CustomerId, COUNT(Invoice.InvoiceId) AS OrderCount, ; 
       SUM(Total) AS TotalCost, SUM(Quantity) AS TrackCount ; 
  FROM Invoice ; 
    JOIN InvoiceLine ; 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
  GROUP BY CustomerId ; 
  INTO CURSOR csrCustSummary 
 
-- SQL Server 
SELECT CustomerId, COUNT(Invoice.InvoiceId) AS OrderCount,  
       SUM(Total) AS TotalCost, SUM(Quantity) AS TrackCount 
  FROM Invoice 
    JOIN InvoiceLine 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
  GROUP BY CustomerId 
 
-- PostgreSQL 
SELECT "CustomerId", COUNT("Invoice"."InvoiceId") AS OrderCount,  
       SUM("Total") AS TotalCost, SUM("Quantity") AS TrackCount 
  FROM "Invoice" 
    JOIN "InvoiceLine" 
      ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
  GROUP BY "CustomerId" 

Figure 40 shows partial results. Since we’ve previously seen examples of orders with 
multiple tracks, it seems obvious that this data is wrong. The problem is that the 
intermediate result created before the data is grouped contains one record for each record 
in the InvoiceLine table. That is, each invoice record appears in that intermediate result 
once for each detail line on the invoice. Then, when GROUP BY consolidates, there are too 
many records for the order count and for summing the Total field of each invoice. For the 
order count, you could solve this by specifying DISTINCT, that is, count each unique 
InvoiceId, but you can’t use DISTINCT for Total because it’s perfectly reasonable for 
different invoices to have the same Total. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 96 of 115 

 

Figure 40.  When you aggregate both parent and child data from a 1-to-many relationship, aggregates of 
parent data can be wrong. 

The solution is to divide the computation into two separate queries, one to compute at the 
invoice level and one at the detail level. Then the results can be combined. By making the 
two computations derived tables, the whole thing can be done in a single query, as in 
Listing 122 (InvAndDetailData).  The first derived table (OrderInfo) computes the order 
count and total cost for each customer, using only the Invoice table. The second derived 
table (TrackInfo) computes the total number of tracks for each customer, joining the 
Invoice and InvoiceLine tables. Then, the two derived tables are joined on CustomerId to 
provide the desired result. Figure 41 shows partial results; comparing to the previous 
figure, you can see that the track count was correct in the prior example, but that both 
order count and total cost were too large. 

Listing 122. Derived tables let you compute aggregates for both parent and child tables separately and then 
combine them. 

* VFP 
SELECT OrderInfo.CustomerId, OrderCount, TotalCost, TrackCount ; 
  FROM  ; 
    (SELECT CustomerId, COUNT(Invoice.InvoiceId) AS OrderCount,  
            SUM(Total) AS TotalCost ; 
       FROM Invoice ; 
       GROUP BY CustomerId) OrderInfo ; 
    JOIN  ; 
      (SELECT CustomerId, SUM(Quantity) AS TrackCount ; 
      FROM Invoice ; 
        JOIN InvoiceLine ; 
            ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
        GROUP BY CustomerId) TrackInfo ; 
       ON OrderInfo.CustomerId = TrackInfo.CustomerId ; 
  INTO CURSOR csrCustSummary 
 
-- SQL Server 
SELECT OrderInfo.CustomerId, OrderCount, TotalCost, TrackCount 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 97 of 115 

  FROM  
    (SELECT CustomerId, COUNT(Invoice.InvoiceId) AS OrderCount,  
            SUM(Total) AS TotalCost 
       FROM Invoice 
       GROUP BY CustomerId) OrderInfo 
    JOIN  
      (SELECT CustomerId, SUM(Quantity) AS TrackCount 
      FROM Invoice 
        JOIN InvoiceLine 
            ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
        GROUP BY CustomerId) TrackInfo 
       ON OrderInfo.CustomerId = TrackInfo.CustomerId 
 
-- PostgreSQL 
SELECT orderinfo."CustomerId", ordercount, totalcost, trackcount 
  FROM  
    (SELECT "CustomerId", COUNT("InvoiceId") AS ordercount,  
            SUM("Total") AS totalcost 
       FROM "Invoice" 
       GROUP BY "CustomerId") orderinfo 
    JOIN  
      (SELECT "CustomerId", SUM("Quantity") AS trackcount 
      FROM "Invoice" 
        JOIN "InvoiceLine" 
            ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
        GROUP BY "CustomerId") trackinfo 
       ON orderinfo."CustomerId" = trackinfo."CustomerId" 

 

Figure 41. To aggregate both parent and child data, use derived tables for the aggregation and join the 
results. 

It’s also not unusual to turn a query that does the bulk of the work of a problem into a 
derived table, where the main query then simply gathers additional data from related 
tables or removes fields that were needed in order to produce the correct results, but aren’t 
ultimately needed. (You can also use a CTE, described in “Common Table Expressions 
(CTEs)” later in this section, the same way.) 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 98 of 115 

Subqueries in the field list 

You can put subqueries into the field list of a query. A subquery in the field list must have 
only one field in its own field list and for each record in the containing query, it must return 
no more than one record. If the subquery returns no records for a record in the containing 
query, that field in the result gets the null value. 

As with other subqueries, these must be surrounded by parentheses. You must specify a 
name for the resulting field of the containing query. Subqueries in the field list can be 
correlated and usually are. 

A subquery in the field list offers an alternative solution to the problem of selecting 
additional fields from a parent table when grouping. Perform the grouping in the subquery 
and the containing query is significantly simplified. 

Listing 123 (CustomerSalesWithNameSubquery) shows another way to solve the problem 
posed in Listing 99 and Listing 100. The goal is to retrieve some customer information 
along with the total of the customer's orders for a specified year. In this example, with two 
aggregates to be computed and only two fields from the parent table, the earlier solutions 
may be easier to maintain and faster. In cases where you need only one aggregated field 
and there are lots of fields from the parent table, this solution is likely to be faster. 

Listing 123. The subqueries in the field list here avoid problems related to grouping and aggregation. 

* VFP 
SELECT Invoice.CustomerId, FirstName, LastName, ; 
       (SELECT COUNT(*) ; 
          FROM Invoice InvA ; 
            JOIN InvoiceLine ILA ; 
              ON InvA.InvoiceId = ILA.InvoiceId ; 
          WHERE InvA.CustomerId = Invoice.CustomerId) AS nTracks, ; 
       (SELECT SUM(ILB.Quantity * ILB.UnitPrice) ; 
          FROM Invoice InvB ; 
            JOIN InvoiceLine ILB ; 
              ON InvB.InvoiceId = ILB.InvoiceId ; 
          WHERE InvB.CustomerId = Invoice.CustomerId) AS nTotal ; 
   FROM Invoice ; 
     JOIN Customer ; 
       ON Invoice.CustomerId = Customer.CustomerId ; 
   WHERE YEAR(InvoiceDate) = 2012 ; 
   GROUP BY Invoice.CustomerId, FirstName, LastName ; 
   INTO CURSOR csrCustomerSales 
 
-- SQL Server 
SELECT Invoice.CustomerId, FirstName, LastName,  
       (SELECT COUNT(*)  
          FROM Invoice InvA  
            JOIN InvoiceLine ILA  
              ON InvA.InvoiceId = ILA.InvoiceId  
          WHERE InvA.CustomerId = Invoice.CustomerId) AS nTracks,  
       (SELECT SUM(ILB.Quantity * ILB.UnitPrice)  
          FROM Invoice InvB  



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 99 of 115 

            JOIN InvoiceLine ILB 
              ON InvB.InvoiceId = ILB.InvoiceId  
          WHERE InvB.CustomerId = Invoice.CustomerId) AS nTotal  
   FROM Invoice  
     JOIN Customer  
       ON Invoice.CustomerId = Customer.CustomerId  
   WHERE YEAR(InvoiceDate) = 2012  
   GROUP BY Invoice.CustomerId, FirstName, LastName 
 
-- PostgreSQL 
SELECT "Invoice"."CustomerId", "FirstName", "LastName",  
       (SELECT COUNT(*)  
          FROM "Invoice" InvA  
            JOIN "InvoiceLine" ILA  
              ON InvA."InvoiceId" = ILA."InvoiceId"  
          WHERE InvA."CustomerId" = "Invoice"."CustomerId") AS nTracks,  
       (SELECT SUM(ILB."Quantity" * ILB."UnitPrice")  
          FROM "Invoice" InvB  
            JOIN "InvoiceLine" ILB 
              ON InvB."InvoiceId" = ILB."InvoiceId"  
          WHERE InvB."CustomerId" = "Invoice"."CustomerId") AS nTotal  
   FROM "Invoice"  
     JOIN "Customer"  
       ON "Invoice"."CustomerId" = "Customer"."CustomerId"  
   WHERE date_part('year',"InvoiceDate") = 2012  
   GROUP BY "Invoice"."CustomerId", "FirstName", "LastName" 

Common Table Expressions (CTEs) 

In SQL Server and PostgreSQL, there’s a first cousin to a subquery called a Common Table 
Expression (or CTE). A CTE is most like a derived table, but it appears before the query that 
uses it, and like any other table, can be referenced multiple times in the query. Although the 
CTE appears before the query, the whole thing is actually a single command, not a series of 
commands. Listing 124 shows the basic structure of a query with a CTE. You introduce the 
CTE-containing query with the keyword WITH. Then, the CTE is named and optionally, you 
list its fields. Following the keyword AS, the CTE’s query appears in parentheses. Finally, 
you have the main query, where presumably, the CTE appears in the FROM clause.  

Listing 124. A CTE appears before the main query it serves, and offers the advantages of a derived table and 
more. 

WITH CTEName (CTEfieldList)  
  AS 
  (SELECT …) 
 
SELECT … ; 

CTEs provide yet another way to solve the problem of providing additional information 
about the result of an aggregation. Listing 101 and Listing 120 show ways of finding the 
first order for a customer and then including information about that particular order in the 
result; Listing 125 (FirstOrderCTE) shows how to do this with a CTE. The CTE is the same 
as the first query in the two-query solution; it identifies the earliest date on which each 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 100 of 115 

customer placed an order. Then, the main query uses that information to find that order 
and extract the order total. In my view, this is the most readable and thus, most 
maintainable, solution. 

Listing 125. In general, queries using CTEs are more readable than those using derived tables. 

-- SQL Server 
WITH MinDate (CustomerId, MinDate) 
AS 
(SELECT CustomerId, MIN(InvoiceDate)  
        FROM Invoice 
        GROUP BY CustomerId) 
 
SELECT FirstName, LastName, MinDate, Total 
   FROM MinDate 
     JOIN Invoice 
       ON MinDate.CustomerId = Invoice.CustomerId 
      AND MinDate.MinDate = Invoice.InvoiceDate 
     JOIN Customer    
       ON Customer.CustomerId = Invoice.CustomerId 
   ORDER BY LastName, FirstName; 
 
 
-- PostgreSQL 
WITH mindate ("CustomerId", mindate) 
AS 
(SELECT "CustomerId", MIN("InvoiceDate") AS MinDate 
       FROM "Invoice" 
       GROUP BY "CustomerId") 
        
SELECT "FirstName", "LastName", mindate, "Total" 
  FROM mindate 
    JOIN "Invoice" 
      ON mindate."CustomerId" = "Invoice"."CustomerId" 
    AND mindate.mindate = "Invoice"."InvoiceDate" 
    JOIN "Customer" 
      ON "Customer"."CustomerId" = "Invoice"."CustomerId"  
  ORDER BY "LastName", "FirstName" ; 

CTEs (or derived tables) provide a cleaner solution to the cross join example in Listing 85. 
Rather than using a temporary table to collect the list of distinct countries, do it in a CTE, as 
in Listing 126 (CrossJoinCTE). 

Listing 126. A CTE simplifies the process of getting a cross-join of countries and genres. 

-- SQL Server 
WITH Countries AS 
(SELECT DISTINCT Country FROM Customer) 
 
SELECT Country, Name 
   FROM Countries 
     CROSS JOIN Genre 
 
-- PostgreSQL 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 101 of 115 

WITH countries AS 
(SELECT DISTINCT "Country" FROM "Customer") 
 
SELECT "Country", "Name" 
   FROM countries 
     CROSS JOIN "Genre" 

A query can contain multiple CTEs; they just have to be separated by commas. So CTEs 
provide another way to handle aggregation at multiple levels. Listing 127 
(InvAndDetailDataCTE) shows an alternative way to solve the problem in Listing 122, 
replacing each derived table with a CTE. Note that the WITH keyword appears only once, at 
the very beginning of the query. 

Listing 127. A single query can have multiple CTEs; separate them with commas. 

-- SQL Server 
WITH OrderInfo (CustomerId, OrderCount, TotalCost) 
AS 
(SELECT CustomerId, COUNT(Invoice.InvoiceId),  
       SUM(Total) 
   FROM Invoice 
   GROUP BY CustomerId),  
 
TrackInfo (CustomerId, TrackCount) 
AS 
(SELECT CustomerId, SUM(Quantity)  
   FROM Invoice 
     JOIN InvoiceLine 
       ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
   GROUP BY CustomerId)  
 
SELECT OrderInfo.CustomerId, OrderCount, TotalCost, TrackCount 
   FROM OrderInfo 
     JOIN TrackInfo 
       ON OrderInfo.CustomerId = TrackInfo.CustomerId 
 
-- PostgreSQL 
WITH orderinfo ("CustomerId", ordercount, totalcost) 
AS 
(SELECT "CustomerId", COUNT("InvoiceId"), SUM("Total") 
   FROM "Invoice" 
   GROUP BY "CustomerId"), 
 
trackinfo ("CustomerId", trackcount) 
AS 
(SELECT "CustomerId", SUM("Quantity")  
   FROM "Invoice" 
     JOIN "InvoiceLine" 
       ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
   GROUP BY "CustomerId") 
    
SELECT orderinfo."CustomerId", ordercount, totalcost, trackcount 
   FROM orderinfo 
     JOIN trackinfo 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 102 of 115 

       ON orderinfo."CustomerId" = trackinfo."CustomerId" 

In the previous example, the two CTEs are independent of each other, but a CTE can include 
an earlier CTE in its FROM clause.  

For example, suppose you want to see sales by year by country and include all year and 
country combinations, even those for which there are no sales in a given year. You can use 
a series of CTEs to create a cross join for the list of year and country combinations, as in 
Listing 128 (SalesByYearAndCountry). The first CTE collects the list of years in which 
orders were placed, while the second collects the list of countries from which orders were 
placed. The third CTE uses a cross join of the first two to get a list of all year/country 
combinations. Then, the main query computes sales for each combination. 

Figure 42 shows partial results in PostgreSQL. This is another case where the order of the 
result varies with the engine; SQL Server sorts by country first, then by year. As always, to 
guarantee the order of the result, include an ORDER BY clause. 

Listing 128. You can refer to an earlier CTE in a later CTE. Here, the first two CTEs collect raw data and the 
third does a cross join to combine them. 

-- SQL Server 
WITH Years AS 
(SELECT DISTINCT Year(InvoiceDate) AS InvYear FROM Invoice), 
 
Countries AS  
(SELECT DISTINCT BillingCountry AS Country FROM Invoice),  
 
AllCountriesYears AS 
(SELECT InvYear, Country 
   FROM Years 
     CROSS JOIN Countries) 
 
SELECT InvYear, Country, SUM(Total) AS TotalSales 
   FROM AllCountriesYears 
     LEFT JOIN Invoice 
       ON InvYear = YEAR(InvoiceDate) 
      AND Country = BillingCountry 
   GROUP BY InvYear, Country 
 
-- PostgreSQL 
WITH years AS 
(SELECT DISTINCT date_part('year',"InvoiceDate") AS invyear FROM "Invoice"), 
 
countries AS  
(SELECT DISTINCT "BillingCountry" AS country FROM "Invoice"),  
 
allcountriesyears AS 
(SELECT invyear, country 
   FROM years 
     CROSS JOIN countries) 
 
SELECT invyear, country, SUM("Total") AS totalsales 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 103 of 115 

   FROM allcountriesyears 
     LEFT JOIN "Invoice" 
       ON invyear = date_part('year',"InvoiceDate") 
      AND country = "BillingCountry" 
   GROUP BY invyear, country 

 

Figure 42. This list of sales by country by year was created using nested CTEs and a cross join. 

In addition to the ability to refer to them more than once in the FROM clause (that is, to do 
a self-join), CTEs offer another ability that derived tables don’t: recursion. You can use a 
CTE to drill down through hierarchical data.  

For example, the ReportsTo field in the Employee table points to another employee record, 
the current employee’s supervisor. Using the techniques covered so far in this paper, 
climbing the hierarchy of employees to see the whole chain from an employee through her 
supervisor to the supervisor’s supervisor and so on all the way up to the boss is tricky. If 
you just want to know, say, the supervisor and the supervisor’s supervisor, you can do it 
with self-joins. (In fact, Listing 82 uses a self-join to connect each employee with his or her 
supervisor.) But to get the entire hierarchy, you don’t know how many levels there are, so 
you can’t just include the right number of self-joins.  

The solution is to use a recursive CTE. A recursive CTE combines two queries with UNION 
ALL. The first is an "anchor"; it provides the starting record or records. The second query 
references the CTE itself to drill down recursively. It continues drilling down until the 
recursive portion returns no records. In PostgreSQL, you need the keyword RECURSIVE 
after WITH. 

Listing 129 (EmpHierarchy) shows a query using a recursive CTE to build the 
management hierarchy for a specified employee, here the one whose EmployeeId is 4. The 
first query in the UNION simply extracts data from the record for that employee, and adds a 
field to count depth in the hierarchy. The second query in the UNION joins the CTE-in-
progress to Employee to extract information about the manager of the person we just 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 104 of 115 

added; the join between Employee and EmpHierarchy matches the ManagerID field in 
EmpHierarchy to the EmployeeId field in Employee to find the manager’s record. In this 
query, all the work is done by the CTE; the main query simply extracts the fields of interest.  
Figure 43 shows the results. The specified employee is in the first row; her immediate 
manager is in the second, and the manager’s manager (who is at the top of the hierarchy of 
all employees) is in the third. (Note that Chinook has only three levels of employee 
hierarchy, so no matter which employee you specify, you’ll never get more than 3 rows in 
the result. With a more robust hierarchy, you might see many more.) 

Listing 129. A recursive CTE lets you drill through a hierarchy.  

-- SQL Server 
WITH EmpHierarchy (FirstName, LastName, ManagerID, EmpLevel)  
AS  
( 
SELECT FirstName, LastName, ReportsTo, 1 AS EmpLevel 
  FROM  Employee 
  WHERE EmployeeID = 4 
UNION ALL 
SELECT Employee.FirstName, Employee.LastName, Employee.ReportsTo, 
       EmpHierarchy.EmpLevel + 1 AS EmpLevel 
  FROM Employee 
    JOIN EmpHierarchy 
      ON Employee.EmployeeID = EmpHierarchy.ManagerID 
) 
 
SELECT FirstName, LastName, EmpLevel 
   FROM EmpHierarchy 
 
-- PostgreSQL 
WITH RECURSIVE emphierarchy ("FirstName", "LastName", managerid, emplevel)  
AS  
( 
SELECT "FirstName", "LastName", "ReportsTo", 1  
  FROM  "Employee" 
  WHERE "EmployeeId" = 4 
UNION ALL 
SELECT "Employee"."FirstName", "Employee"."LastName", "Employee"."ReportsTo",   
       emphierarchy.emplevel + 1  
  FROM "Employee" 
    JOIN emphierarchy 
      ON "Employee"."EmployeeId" = emphierarchy.managerid 
) 
 
SELECT "FirstName", "LastName", emplevel 
   FROM emphierarchy 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 105 of 115 

 

Figure 43. The first row here shows the employee of interest, the second her manager, and the third the head 
honcho of the company, who is the manager’s manager. 

There are additional examples of recursive CTEs for dealing with hierarchical data, 
including a discussion of SQL Server’s HierarchyID data type, on my website at 
http://www.tomorrowssolutionsllc.com/Articles/Handling%20Hierarchical%20Data.pdf.  

Advanced data manipulation 

In "Basic data manipulation" earlier in this document, we looked at the simple versions of 
INSERT, UPDATE and DELETE. Each of these commands has additional capabilities. 

Inserting query results 

The section "Adding records" earlier in the document showed four forms for the SQL 
INSERT command: one pure SQL and three VFP extensions. There’s a fifth form that’s also 
pure SQL: INSERT INTO … SELECT, where the records to be added are assembled using a 
query. The syntax for this form is shown in Listing 130. 

Listing 130. You add records in bulk by using a query to collect them. 

INSERT INTO TableName [ ( cFieldList ) ]  
   SELECT … 

The field list of the query must match the field list of the specified table or that portion of it 
listed in cFieldList. Fields from the query are inserted into the specified table in the order 
they appear in the query result. The names of the fields in the query result are ignored. 

Suppose you have a data warehouse for Chinook where you keep annual totals by 
customer. You could add a year’s worth of data to the warehouse using INSERT INTO … 
SELECT. Listing 131 (AnnualSalesToWarehouse) shows both the structure of the 
warehouse (a cursor or temporary table here; in production, it would be a table that 
already existed) and the command to add a specific year’s data.  

Listing 131. INSERT INTO … SELECT gives you the ability to add records in batches. 

* VFP 
CREATE CURSOR Warehouse ; 
   (CustomerId I, SaleYear I, Tracks I, SaleTotal Y) 
 
INSERT INTO Warehouse (CustomerId, SaleYear, Tracks, SaleTotal) ; 
   SELECT CustomerId, YEAR(InvoiceDate) AS SaleYear, ; 
          SUM(Quantity), SUM(Quantity * UnitPrice) ; 
      FROM Invoice ; 
        JOIN InvoiceLine ; 
          ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
      WHERE YEAR(InvoiceDate) = 2012 ; 

http://www.tomorrowssolutionsllc.com/Articles/Handling%20Hierarchical%20Data.pdf


Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 106 of 115 

      GROUP BY CustomerId, SaleYear 
 
-- SQL Server 
CREATE TABLE #Warehouse  
   (CustomerId Int, SaleYear SmallInt, Tracks SmallInt, SaleTotal Money); 
 
INSERT INTO #Warehouse (CustomerId, SaleYear, Tracks, SaleTotal) 
   SELECT CustomerId, YEAR(InvoiceDate), SUM(Quantity), SUM(Quantity * UnitPrice) 
      FROM Invoice 
        JOIN InvoiceLine 
          ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
      WHERE YEAR(InvoiceDate) = 2012 
      GROUP BY CustomerId, YEAR(InvoiceDate); 
 
-- PostgreSQL 
CREATE TEMPORARY TABLE warehouse  
   (customerid Integer, saleyear SmallInt, tracks SmallInt, saletotal Money); 
 
INSERT INTO warehouse (customerid, saleyear, tracks, saletotal) 
   SELECT "CustomerId", date_part('year',"InvoiceDate"),  
           SUM("Quantity"), SUM("Quantity" * "UnitPrice") 
      FROM "Invoice" 
        JOIN "InvoiceLine" 
          ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
      WHERE date_part('year',"InvoiceDate") = 2012 
      GROUP BY "CustomerId", date_part('year',"InvoiceDate"); 

In SQL Server and PostgreSQL, you can use INSERT with a CTE, so you can do all the 
computation first and then have a fairly simple INSERT INTO … SELECT. Listing 132 
(AnnualSalesToWarehouseCTE) produces the same result as the previous example, but 
does the computations in a CTE. 

Listing 132. You can use INSERT with a CTE. 

-- SQL Server 
CREATE TABLE #Warehouse  
   (CustomerId Int, SaleYear SmallInt, Tracks SmallInt, SaleTotal Money); 
 
WITH AnnualTotals (CustomerId, SaleYear, Tracks, SaleTotal) AS 
   (SELECT CustomerId, YEAR(InvoiceDate), SUM(Quantity), SUM(Quantity * UnitPrice) 
      FROM Invoice 
        JOIN InvoiceLine 
          ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
      WHERE YEAR(InvoiceDate) = 2012 
      GROUP BY CustomerId, YEAR(InvoiceDate)) 
 
INSERT INTO #Warehouse (CustomerId, SaleYear, Tracks, SaleTotal) 
   SELECT * FROM AnnualTotals; 
 
-- PostgreSQL 
CREATE TEMPORARY TABLE warehouse  
   (customerid Integer, saleyear SmallInt, tracks SmallInt, saletotal Money); 
 
WITH AnnualTotals (customerid, saleyear, tracks, saletotal) AS 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 107 of 115 

(SELECT "CustomerId", date_part('year',"InvoiceDate"),  
           SUM("Quantity"), SUM("Quantity" * "UnitPrice") 
      FROM "Invoice" 
        JOIN "InvoiceLine" 
          ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
      WHERE date_part('year',"InvoiceDate") = 2012 
      GROUP BY "CustomerId", date_part('year',"InvoiceDate")) 
       
INSERT INTO warehouse (customerid, saleyear, tracks, saletotal) 
   SELECT * FROM AnnualTotals; 

Creating complex updates 

UPDATE also supports some forms beyond the basic syntax covered in “Changing existing 
records.”  

First, you can use a subquery in the SET clause of UPDATE. That is, you can base the 
replacement value on the results of a subquery. (In VFP, only one field in an UPDATE 
command can do this.) Typically, such a subquery is correlated to match the computed 
result to the record being updated. If the subquery returns an empty result, the specified 
field gets the null value. 

The example in Listing 133 (SwapCustRep) changes the assigned customer representative 
for each customer based on a cursor/temporary table indicating how to change them. 
(Imagine that each customer rep is being assigned a new territory, for example.) 

Listing 133. UPDATE can use a subquery in the SET clause to specify the new value. 

* VFP 
CREATE CURSOR csrNewRep (OldEmpId Int, NewEmpId Int) 
INSERT INTO csrNewRep (OldEmpId, NewEmpId) VALUES (3,4) 
INSERT INTO csrNewRep (OldEmpId, NewEmpId) VALUES (4,5) 
INSERT INTO csrNewRep (OldEmpId, NewEmpId) VALUES (5,3) 
 
UPDATE Customer ; 
   SET SupportRepId = ; 
     (SELECT NewEmpId FROM csrNewRep WHERE OldEmpId = Customer.SupportRepId) 
 
-- SQL Server 
CREATE TABLE #NewRep (OldEmpId Int, NewEmpId Int); 
INSERT INTO #NewRep (OldEmpId, NewEmpId) 
   VALUES (3,4), (4,5), (5,3); 
 
UPDATE Customer 
   SET SupportRepId =  
     (SELECT NewEmpId FROM #NewRep WHERE OldEmpId = Customer.SupportRepId); 
 
-- PostgreSQL 
CREATE TEMPORARY TABLE newrep (oldempid Integer, newempid Integer); 
INSERT INTO newrep (oldempid, newempid) 
   VALUES (3,4), (4,5), (5,3); 
 
UPDATE "Customer" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 108 of 115 

   SET "SupportRepId" =  
     (SELECT newempid FROM newrep WHERE oldempid = "Customer"."SupportRepId"); 
    

In VFP, if you use a subquery in the SET clause, the UPDATE command cannot contain a 
subquery in WHERE. 

UPDATE also accepts a FROM clause that lets you determine which records to update and 
specify the new field values using fields from other tables. The syntax for this form of 
UPDATE, known as a correlated update, is shown in Listing 134. 

Listing 134. You can use a FROM clause in UPDATE to draw values from other tables and determine which 
records to update. 

UPDATE TableName1  
       SET FieldName1 = uExpr1 
          [, FieldName2 = uExpr2 [, ... ] ] 
       FROM TableName2 
         [ JOIN TableName3 … ON JoinExpression ]   
       [ WHERE lFilterCondition ] 

In VFP and SQL Server, you can list the table being updated in the FROM clause and use ON 
to specify the conditions that join it to another table, if you wish. In all three versions, you 
can omit the table being updated from the FROM clause and use the WHERE clause to 
specify the join conditions. The rules for joins are the same in UPDATE as in queries, 
including the ability to specify outer joins, and the choice of nested or sequential style for 
multiple joins. 

The commands in Listing 135 (SwapCustRepFrom) and Listing 136 (SwapCustRepJoin) 
demonstrate the two approaches to joining the tables, showing alternative ways to change 
the assigned representative for each customer. 

Listing 135. The FROM clause in UPDATE lets you both draw replacement data from additional tables and 
specify which records are updated. Here, the table to be updated is not included in the FROM clause, so the 
join condition appears in the WHERE clause. 

* VFP 
CREATE CURSOR csrNewRep (OldEmpId Int, NewEmpId Int) 
INSERT INTO csrNewRep (OldEmpId, NewEmpId) VALUES (3,4) 
INSERT INTO csrNewRep (OldEmpId, NewEmpId) VALUES (4,5) 
INSERT INTO csrNewRep (OldEmpId, NewEmpId) VALUES (5,3) 
 
UPDATE Customer ; 
   SET SupportRepId = NewEmpId ; 
   FROM csrNewRep ; 
   WHERE csrNewRep.OldEmpId = Customer.SupportRepId 
 
-- SQL Server 
CREATE TABLE #NewRep (OldEmpId Int, NewEmpId Int); 
INSERT INTO #NewRep (OldEmpId, NewEmpId) 
   VALUES (3,4), (4,5), (5,3); 
 
UPDATE Customer 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 109 of 115 

   SET SupportRepId = #NewRep.NewEmpId 
   FROM #NewRep  
   WHERE #NewRep.OldEmpId = Customer.SupportRepId; 
 
-- PostgreSQL 
CREATE TEMPORARY TABLE newrep (oldempid Integer, newempid Integer); 
INSERT INTO newrep (oldempid, newempid) 
   VALUES (3,4), (4,5), (5,3); 
 
UPDATE "Customer" 
   SET "SupportRepId" = newempid  
   FROM newrep  
   WHERE newrep.oldempid = "Customer"."SupportRepId"; 

Listing 136. In this UPDATE command, the table to be updated is listed in the FROM clause and ON is used to 
join the tables. PostgreSQL doesn’t support this approach. 

* VFP 
CREATE CURSOR csrNewRep (OldEmpId Int, NewEmpId Int) 
INSERT INTO csrNewRep (OldEmpId, NewEmpId) VALUES (3,4) 
INSERT INTO csrNewRep (OldEmpId, NewEmpId) VALUES (4,5) 
INSERT INTO csrNewRep (OldEmpId, NewEmpId) VALUES (5,3) 
 
UPDATE Customer ; 
   SET SupportRepId = NewEmpId ; 
   FROM csrNewRep ; 
     JOIN Customer ; 
        ON csrNewRep.OldEmpId = Customer.SupportRepId 
 
-- SQL Server 
CREATE TABLE #NewRep (OldEmpId Int, NewEmpId Int); 
INSERT INTO #NewRep (OldEmpId, NewEmpId) 
   VALUES (3,4), (4,5), (5,3); 
 
UPDATE Customer 
   SET SupportRepId = #NewRep.NewEmpId 
   FROM #NewRep  
     JOIN Customer 
       ON #NewRep.OldEmpId = Customer.SupportRepId; 

As in SELECT, the FROM clause supports derived tables, so you can assemble the data you 
need for an update as part of the UPDATE command. 

For example, consider a small data warehouse designed to contain only the previous year’s 
sales data by track. It contains one record for each track, listing the track id and name and 
two additional fields: total sales and units sold of that track for a year. At the end of each 
year, you need to update the table with the prior year’s data. Listing 137 
(UpdateSalesToWarehouse) uses a derived table to compute the annual total. UPDATE 
joins the derived table to the data warehouse to update the warehouse. This code assumes 
that the data warehouse already exists. (The code provided in the session materials creates 
and populates the warehouse before updating it.) Because PostgreSQL doesn’t allow you to 
put the update table in the FROM clause, the derived table is more complex in that version. 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 110 of 115 

Where the VFP and SQL Server versions use an outer join with the warehouse table to 
make sure every record gets updated, the PostgreSQL version has to do the outer join in the 
derived table, to make sure it contains one record per track. (It’s worth noting that this 
code only updates the tracks that are already in the warehouse. If new tracks were added in 
the specified year, they’re not added to the warehouse.) 

Listing 137. You can use a derived table in UPDATE to compute the replacement data on the fly. 

* VFP 
UPDATE csrWarehouse ;  
   SET SaleYear = 2012, ; 
       Tracks = NVL(AnnualSales.Tracks, 0), ; 
      SaleTotal = NVL(AnnualSales.SaleTotal, 0) ; 
   FROM csrWarehouse ; 
     LEFT JOIN ; 
       (SELECT TrackId, SUM(Quantity) AS Tracks, ; 
               SUM(Quantity * UnitPrice) AS SaleTotal ; 
          FROM Invoice ; 
           JOIN InvoiceLine ; 
             ON Invoice.InvoiceId = InvoiceLine.InvoiceId ; 
          WHERE YEAR(InvoiceDate) = 2012 ; 
          GROUP BY TrackId) AS AnnualSales ; 
   ON csrWarehouse.TrackId = AnnualSales.TrackId 
 
-- SQL Server 
UPDATE #Warehouse  
   SET SaleYear = 2012,  
       Tracks = ISNULL(AnnualSales.Tracks, 0), 
      SaleTotal = ISNULL(AnnualSales.SaleTotal, 0) 
   FROM #Warehouse 
     LEFT JOIN  
       (SELECT TrackId, SUM(Quantity) AS Tracks,  
               SUM(Quantity * UnitPrice) AS SaleTotal 
          FROM Invoice 
           JOIN InvoiceLine 
             ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
          WHERE YEAR(InvoiceDate) = 2012 
          GROUP BY TrackId) AS AnnualSales 
   ON #Warehouse.TrackId = AnnualSales.TrackId; 
 
-- PostgreSQL 
UPDATE warehouse  
   SET saleyear = 2012,  
       tracks = coalesce(annualsales.tracks, 0), 
       saletotal = coalesce(annualsales.saletotal, 0) 
   FROM  
     (SELECT "Track"."TrackId", SUM("Quantity") AS tracks,  
             SUM("Quantity" * "InvoiceLine"."UnitPrice") AS saletotal 
        FROM "Invoice" 
          JOIN "InvoiceLine" 
            ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
            AND date_part('year',"InvoiceDate") = 2012 
          RIGHT JOIN "Track" 
            ON "Track"."TrackId" = "InvoiceLine"."TrackId"          



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 111 of 115 

         GROUP BY "Track"."TrackId") AS annualsales 
   WHERE warehouse."TrackId" = annualsales."TrackId"; 

In SQL Server and PostgreSQL, you can use a CTE to gather the replacement data. Listing 
138 (UpdateSalesToWarehouseCTE) shows the previous example, but using a CTE rather 
than a derived table. As in other cases, I find this version more readable and maintainable. 
Also, as before, the PostgreSQL version requires more work in the CTE to ensure that every 
track is updated, not just those sold in the specified year. 

Listing 138. In SQL Server and PostgreSQL, you can use a CTE to collect the data to be used in UPDATE. 

-- SQL Server 
WITH AnnualSales (TrackId, Tracks, SaleTotal)  
AS 
(SELECT TrackId, SUM(Quantity) AS Tracks, SUM(Quantity * UnitPrice) AS SaleTotal 
   FROM Invoice 
     JOIN InvoiceLine 
      ON Invoice.InvoiceId = InvoiceLine.InvoiceId 
   WHERE YEAR(InvoiceDate) = 2012 
   GROUP BY TrackId) 
 
UPDATE #Warehouse  
   SET SaleYear = 2012,  
       Tracks = ISNULL(AnnualSales.Tracks, 0), 
       SaleTotal = ISNULL(AnnualSales.SaleTotal, 0) 
   FROM #Warehouse 
     LEFT JOIN AnnualSales 
       ON #Warehouse.TrackId = AnnualSales.TrackId; 
 
-- PostgreSQL 
WITH annualsales  
AS 
(SELECT "Track"."TrackId", SUM("Quantity") AS tracks,  
        SUM("Quantity" * "InvoiceLine"."UnitPrice") AS saletotal 
     FROM "Invoice" 
       JOIN "InvoiceLine" 
         ON "Invoice"."InvoiceId" = "InvoiceLine"."InvoiceId" 
         AND date_part('year',"InvoiceDate") = 2012 
       RIGHT JOIN "Track" 
         ON "Track"."TrackId" = "InvoiceLine"."TrackId"          
     GROUP BY "Track"."TrackId") 
 
UPDATE warehouse  
   SET saleyear = 2012,  
       tracks = coalesce(annualsales.tracks, 0), 
       saletotal = coalesce(annualsales.saletotal, 0) 
   FROM annualsales 
   WHERE warehouse."TrackId" = annualsales."TrackId"; 

Correlated deletion 

Just as you can have correlated updates, you can also have correlated deletes, which let you 
specify which records are to be deleted by referring to other tables. Each language uses 
different syntax for this capability.  



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 112 of 115 

In VFP, when more than one table is involved in DELETE, you have to specify the deletion 
table, the table from which records are being deleted. As with UPDATE, you choose 
whether to include the deletion table in the FROM clause as well and use a JOIN condition 
or omit it and join it in the WHERE clause. The syntax for correlated deletes in VFP is 
shown in Listing 139. 

Listing 139. VFP’s syntax for correlated deletes can include the deletion table twice. 

DELETE [ DeletionTable ] 
     FROM Table1 [ JOIN Table2 … ON lJoinCondition ] 
     [ WHERE lCondition ] 

If you include the deletion table in the FROM clause, use the actual table name. If you assign 
a local alias, use the local alias between DELETE and FROM, as well as in any conditions 
applying to the deletion table. 

In SQL Server, you can have two uses of the FROM keyword to list both the table you’re 
deleting from and the tables you’re using to specify the records to delete. Listing 140 
shows the syntax; the only difference from VFP is the optional FROM keyword in specifying 
the deletion table. 

Listing 140. SQL Server’s version of correlated delete allows you to list the deletion table first, but doesn’t 
require it. 

DELETE [ FROM ] DeletionTable  
   FROM Table1 [ JOIN Table2 … ON lJoinCondition ] 
     [ WHERE lCondition ] 

PostgreSQL uses the USING keyword to specify the list of tables the deletion is based on. As 
with UPDATE, the affected table can’t appear in that clause, so any join condition involving 
it has to be put in the WHERE clause. Listing 141 shows the PostgreSQL syntax for 
correlated deletes. 

Listing 141. In PostgreSQL, the second FROM keyword is replaced by USING, but the syntax is otherwise the 
same. 

DELETE FROM DeletionTable 
   USING Table1 [ JOIN Table2 … ON lJoinCondition ] 
     [ WHERE lCondition ] 

Listing 142 (DeleteGenres) shows a correlated DELETE command; it deletes all tracks 
whose genre is included in a list to be deleted, as might be needed if Chinook decides to 
stop handing particular genres. In order to keep the Chinook data intact, the example code 
actually operates on cursors/temporary tables. (In fact, although the Chinook database 
doesn’t have them, a production database would likely have referential integrity rules that 
would prevent any tracks that have been sold from being deleted.) 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 113 of 115 

Listing 142. The ability to include joins in DELETE lets you decide which records to delete based on data in 
other tables. 

* VFP 
DELETE csrTrack ; 
   FROM csrTrack ; 
     JOIN Genre ; 
       ON csrTrack.GenreId = Genre.GenreId ; 
     JOIN csrDeleteGenres ; 
       ON Genre.Name = csrDeleteGenres.Name 
 
-- SQL Server 
DELETE FROM #Track 
   FROM #Track 
     JOIN Genre 
       ON #Track.GenreId = Genre.GenreId 
     JOIN #DeleteGenres 
       ON Genre.Name = #DeleteGenres.Name; 
 
-- PostgreSQL 
DELETE FROM track2 
   USING "Genre" 
     JOIN deletegenres 
       ON "Genre"."Name" = deletegenres.name 
   WHERE track2."GenreId" = "Genre"."GenreId"; 

Like UPDATE and SELECT, DELETE supports derived tables and in SQL Server and 
PostgreSQL, CTEs. Listing 143 (DeleteGenresCTE) show a CTE version of deleting all tracks 
in a list of genres. In this case, the CTE doesn’t make a big difference in readability, but 
where the code to figure out which records is more complex, I find code using a CTE easier 
to read than that using derived tables or complex joins. 

Listing 143. You can use CTEs in DELETE to put together the data on which the deletion decision is based.  

-- SQL Server 
WITH ToDelete (TrackId) AS 
(SELECT TrackId 
   FROM #Track 
     JOIN Genre 
       ON #Track.GenreId = Genre.GenreId 
     JOIN #DeleteGenres 
       ON Genre.Name = #DeleteGenres.Name) 
 
DELETE FROM #Track 
   FROM #Track  
     JOIN ToDelete 
       ON #Track.TrackId = ToDelete.TrackId; 
 
-- PostgreSQL 
WITH todelete AS 
(SELECT "TrackId" 
   FROM "Track" 
     JOIN "Genre" 
       ON "Track"."GenreId" = "Genre"."GenreId" 



Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 114 of 115 

     JOIN deletegenres 
       ON "Genre"."Name" = deletegenres.name) 
        
DELETE FROM track2 
   USING todelete 
   WHERE track2."TrackId" = todelete."TrackId"; 

Resources 
There are a lot of resources online for SQL Server and PostgreSQL. For VFP’s SQL, there are 
fewer, but there are some. In general, Google (or Bing) is your friend here. 

These days, most often, the first site I find with the answer I need on any SQL Server or 
PostgreSQL question is Stack Overflow: http://stackoverflow.com/.  

VFP 

I’ve written about VFP’s SQL quite a few times. There are several conference papers on my 
website at http://www.tomorrowssolutionsllc.com/publications/conferencepapers. (You 
can filter the categories column to see just the SQL papers.) Much of the same material, but 
also some additional material is on the Articles page at 
http://www.tomorrowssolutionsllc.com/publications/articles. Finally, much of what’s in 
this paper is excerpted from or based on my book Taming Visual FoxPro’s SQL, available 
from Hentzenwerke Publishing. The book is focused solely on VFP, so includes more depth 
on VFP specifics, and some additional material. 

https://msdn.microsoft.com/en-us/library/44xx6c68(v=vs.80).aspx provides an entry 
point into SQL commands in the VFP Help. The list here includes both the native SQL 
commands and those used for addressing back-end servers such as SQL Server and 
PostgreSQL. 

SQL Server 

The first stop for SQL Server questions is the official documentation online at 
https://msdn.microsoft.com/en-us/library/bb510741.aspx.  

There are a number of bloggers who’ve written useful articles about SQL Server over the 
years. One that I’ve found helpful repeatedly is Dave Pinal (http://blog.sqlauthority.com/). 

Over the last few years, I’ve written quite a few articles and given some sessions about 
facets of SQL Server that aren’t in VFP’s SQL, or work differently. You’ll find them on the 
previously mention articles and conference papers pages of my website. 

I’ve had some success getting answers on Twitter using the hashtag #SQLServer. 

PostgreSQL 

A good entry page for the official PostgreSQL documentation is 
https://www.postgresql.org/docs/9.5/static/reference.html. I haven’t been working with 
PostgreSQL long enough to have identified any reliable blogs. 

http://stackoverflow.com/
http://www.tomorrowssolutionsllc.com/publications/conferencepapers
http://www.tomorrowssolutionsllc.com/publications/articles
http://hentzenwerke.com/catalog/tamingvfpsql.htm
https://msdn.microsoft.com/en-us/library/44xx6c68(v=vs.80).aspx
https://msdn.microsoft.com/en-us/library/bb510741.aspx
http://blog.sqlauthority.com/
https://www.postgresql.org/docs/9.5/static/reference.html


Learn to use SQL 

Copyright 2016, Tamar E. Granor      Page 115 of 115 

On Twitter, the hashtag #PostgreSQL will get some replies. 

While working on this paper, I happened to read a fascinating article about the history of 
PostgreSQL. It was based on the Turing Award lecture given by winner Michael 
Stonebraker and appeared in the February 2016 issue of Communications of the ACM. In it, 
Stonebraker draws an analogy between the development of PostgreSQL and a cross-
country bike trip he and his wife took. As far as I can tell, the article is not available for free 
online (though ACM Digital Library members can read it at http://tinyurl.com/z2ltgxt).  A 
video of the lecture is at http://amturing.acm.org/vp/stonebraker_1172121.cfm.  

Working between versions 

As the examples in this paper show, one of the challenges when working with multiple 
versions of SQL is remembering their differences.  

The Visual FoxPro Wiki includes a useful guide to differences between VFP and SQL Server 
at http://fox.wikis.com/wc.dll?Wiki~VFPSQL-TSQL-Mapping~VFP. As you find more of 
them, please contribute to the topic. 

Mike Lewis wrote about differences between VFP’s SQL and SQL Server at http://www.ml-
consult.co.uk/foxst-38.htm.  

There’s a short list of differences between SQL Server and PostgreSQL at 
http://kejser.org/small-differences-between-sql-and-postgresql/, and a comparison of the 
two at http://www.pg-versus-ms.com/.  

Make SQL part of your vocabulary 
SQL commands offer new, often better, ways to get things done in your applications. 
Frequently, a single command can replace a page full of complicated, nested loops. For 
most back-end servers, SQL is really the only option. 

The key to becoming adept with SQL is to start small and keep expanding. Try some simple 
queries, and then move on to more complex questions. Before you know it, you'll be looking 
for more and more places to use SQL. 

http://tinyurl.com/z2ltgxt
http://amturing.acm.org/vp/stonebraker_1172121.cfm
http://fox.wikis.com/wc.dll?Wiki~VFPSQL-TSQL-Mapping~VFP
http://www.ml-consult.co.uk/foxst-38.htm
http://www.ml-consult.co.uk/foxst-38.htm
http://kejser.org/small-differences-between-sql-and-postgresql/
http://www.pg-versus-ms.com/

	What is SQL?
	Terminology
	Notation
	Strings
	Dates and DateTimes
	Identifiers
	Syntax listings

	Case-sensitivity
	Examples
	Defining Databases
	Creating a database
	Creating tables
	Setting up the table
	Specifying fields
	More table information

	Removing and deleting tables
	Changing table structures
	Creating temporary tables
	Temporary tables in VFP
	Temporary tables in SQL Server
	Temporary tables in PostgreSQL


	Working with Data
	Basic data manipulation
	Adding records
	Changing existing records
	Removing records

	Querying data
	Getting started
	Managing results
	Managing results in the SQL back-ends
	Managing results in VFP

	Choosing records
	Eliminating duplicate records
	Combining data from multiple tables
	Outer joins
	Self-joins
	Cross joins

	Ordering data
	Filtering based on record order

	Consolidating and aggregating results
	Filtering aggregated data
	Combining query results

	Working with subqueries
	Filtering with subqueries
	Correlation
	Derived Tables—Subqueries in FROM
	Subqueries in the field list
	Common Table Expressions (CTEs)

	Advanced data manipulation
	Inserting query results
	Creating complex updates
	Correlated deletion


	Resources
	VFP
	SQL Server
	PostgreSQL
	Working between versions

	Make SQL part of your vocabulary

