- 1

Going OVER and Above with
SQL

Tamar E. Granor

Tomorrow's Solutions, LLC

Voice: 215-635-1958

Email: tamar@tomorrowssolutionslic.com

The SQL 2003 standard introduced the OVER keyword that lets you apply a function to a set
of records. Introduced in SQL Server 2005, this capability was extended in SQL Server 2012.
The functions allow you to rank records, aggregate them in a variety of ways, put data from
multiple records into a single result record, and compute and use percentiles. The set of
problems they solve range from removing exact duplicates to computing running totals and
moving averages to comparing data from different periods to removing outliers.

In this session, we'll look at the OVER operator and the many functions you can use with it.
We'll look at a variety of problems that can be solved using OVER.

Going OVER and Above with SQL

Over the last couple of years, I've been exploring aspects of SQL Server’s T-SQL
implementation that aren’t included in VFP’s SQL sub-language. I first noticed the OVER
keyword as an easy way to solve a problem that’s fairly complex with VFP’s SQL, getting the
top N records in each of a set of groups with a single query. At the time, I noticed that OVER
had other uses, but I didn’t stop to explore them.

When I finally returned to see what else OVER could do, [was blown away. In recent
versions of SQL Server (2012 and later), OVER provides ways to compute running totals
and moving averages, to put data from several records of the same table into a single result
record, to divide records into percentile groups and more.

The more I looked at this capability, the more impressed I became, so [decided that while
doing a session on a single aspect of a single command seems odd, there was good reason
to do so.

Introduction

The formal name for the set of capabilities provided by the OVER clause is “window
functions.” They were introduced in the ANSI SQL 2003 standard and extended in the 2008
standard. Support for window functions was introduced in SQL Server 2005 and
significantly enhanced in SQL Server 2012.

The basic idea with window functions is that you can define a set of records and apply a
function to only that set of records in order to specify a field in a query. There are several
ways to specify the set of records and they can be combined. The basic syntax for this is
shown in Listing 1; it applies to all the functions except PERCENTILE_CONT and
PERCENTILE_DISC. (See “Searching by percentile,” later in this document, for the syntax for
those two functions.) The three optional clauses inside the parentheses provide the
definition for the set of records. Table 1 shows the list of window functions.

Listing 1. Most of the window functions use this syntax.
<window function> OVER (
[PARTITION BY <list of expressions>]
[ORDER BY <list of <expression> ASC | DESC>>]
[ROWS | RANGE <window frame>])

Table 1. SQL Server supports quite a few window functions. Support has improved over time.

Function Version Group Action Comments Example uses
introduced

ROW_NUMBER 2005 Ranking Assigns anumber | ORDER BY must Assigning serial
to each row of be included. numbers,
each partition; randomly
within each ordering
partition, the groups,
number is unique. deduping,

paging

Copyright 2015, Tamar E. Granor ~ Page 2 of 55

Going OVER and Above with SQL

Function Version Group Action Comments Example uses

introduced

RANK 2005 Ranking Assigns a number | ORDER BY must Top N for each
to each row of be included. partition
each partition.

Records with the
same value for
the ordering
expression are
assigned the
same rank. Skips
values after ties
(eg,1,2,33,5).

DENSE_RANK 2005 Ranking Assigns anumber | ORDER BY must Numbering
to each row of be included. distinct values
each partition.

Records with the
same value for
the ordering
expression are
assigned the
same rank. No
values are
skipped after ties.
(eg,1,2,3,3,4)

NTILE 2005 Ranking Divides the ORDER BY must Determine
records in each be included. quartiles,
partition into a quintiles, or
specified number deciles (or any
of groups as other ...iles).
evenly as
possible.

SUM 2005 Aggregates | Computes the ORDER BY and Totaling on
total of the window frame multiple levels
specified capability was in a single
expression for the | added in SQL query; in 2012
records in the Server 2012. and later,
specified running totals.
partition.

AVG 2005 Aggregates | Computes the ORDER BY and Averaging on
average of the window frame multiple levels
specified capability was in a single
expression for the | added in SQL query; in 2012
records in the Server 2012. and later,
specified moving
partition. averages.

MIN 2005 Aggregates | Finds the ORDER BY and Finding
minimum value window frame minimum value
of the specified capability was on multiple
expression for the | added in SQL levels in a single
records in the Server 2012. query; in 2012

specified and later,
partition. “minimums to
date.”
Copyright 2015, Tamar E. Granor ~ Page 3 of 55

Going OVER and Above with SQL

Function Version Group Action Comments Example uses
introduced
MAX 2005 Aggregates | Finds the ORDER BY and Finding
maximum value window frame maximum value
of the specified capability was on multiple
expression for the | added in SQL levels in a single
records in the Server 2012. query; in 2012
specified and later,
partition. “maximums to
date.”
COUNT 2005 Aggregates | Counts the COUNT returns an | Counting on
COUNTBIG records in the Int; COUNTBIG multiple levels
specified returns a Biglnt. in a single
partition. ORDER BY and query; in 2012
window frame and later,
capability was running counts.
added in SQL
Server 2012.
VAR 2005 Aggregates | Computes the VAR computes the | Compute
VARP variance of the variance for the variance for
expression for the | sample; VARP multiple levels
records in the computes the in a single
specified variance for the query.
partition. population.
ORDER BY and
window frame
capability was
added in SQL
Server 2012.
STDEV 2005 Aggregates | Computes the STDEV computes Compute
STDEVP standard the standard standard
deviation of the deviation for the deviation for
expression for the | sample; STDEVP multiple levels
records in the computes the in a single
specified standard deviation | query.
partition. for the population.
ORDER BY and
window frame
capability was
added in SQL
Server 2012.
LAG 2012 Analytic Provides the ORDER BY must Compare
value of the be included. multiple data
specified Optional points (such as

expression for a parameters let you | data from
prior row in the specify how far multiple
specified back to lookand a | reporting
partition. default value. periods) in a
single record.
Fill in missing
valuesina
sequence.
Copyright 2015, Tamar E. Granor =~ Page 4 of 55

Going OVER and Above with SQL

Function Version Group Action Comments Example uses

introduced

LEAD 2012 Analytic Provides the ORDER BY must Compare
value of the be included. multiple data
specified Optional points (such as
expression for a parameters let you | data from
subsequent row specify how far multiple
in the specified forward to look reporting
partition. and a default periods) in a

value. single record.
Fill in missing
values in a
sequence.

FIRST_VALUE 2012 Analytic Provides the ORDER BY must Pull data from
value of the be included. “minimum”
specified record (such as
expression for the year of fewest
first record in the sales) of a
specified partition into
partition. other records.

LAST _VALUE 2012 Analytic Provides the ORDER BY must Pull data from
value of the be included. “Last” | “maximum”
specified is interpreted as record (such as
expression for the | “current” unless year of most
lastrecord in the | window frame is sales) of a
specified specified. partition into
partition. other records.

CUME_DIST 2012 Analytic Computes ORDER BY must Remove outliers
relative position be included. Each (say, top and
ofarecord inthe | record isassigned | bottom 5%).
specified a value between 0
partition, based and 1; 0 is not
on the specified used. Records with
order. the same value for

the specified order
are assigned the
same value.

PERCENT_RANK 2012 Analytic Computes ORDER BY must Remove outliers
relative rank ofa | be included. Each (say, top and
row in the record is assigned | bottom 5%).
specified a value between 0
partition, based and 1. Records
on the specified with the same
order. value for the

specified order are
assigned the same
value.

PERCENTILE_CONT | 2012 Analytic Returns the value | ORDER BY must Find the median
at the specified be included. for each group,
percentile in the Interpolates to find all records
specified provide a at or above (or

partition, based
on the specified
order.

continuous set of
values.

at or below) a
given
percentile.

Copyright 2015, Tamar E. Granor

Page 5 of 55

Going OVER and Above with SQL

Function Version Group Action Comments Example uses
introduced
PERCENTILE_DISC 2012 Analytic Returns the value | ORDER BY must Find the median

at the specified
percentile in the
specified
partition, based
on the specified
order.

be included. Does
not interpolate;
only returns
values actually in
the partition.

for each group,
find all records
at or above (or
at or below) a
given
percentile.

The PARTITION BY clause lets you divide the data into groups, much like GROUP BY.
However, GROUP BY consolidates all the records with matching values into a single result
record. PARTITION BY simply indicates the groups of records to which the specified

function should be applied. The original records still appear in the result set.

This ability to divide records into groups for a single calculation is one of the big benefits of
OVER. It means that, in a single query, you can compute aggregated results based on
different groupings. For example, you might compute a salesperson’s total sales by day,
week, month and year, and put each of those in a separate column of a single record. The
result set would have one record for each day, but each record would include weekly,
monthly and annual totals. (There are examples like this in “Aggregate functions,” later in

this document.)

The ORDER BY clause indicates the order in which records are processed by the specified
function. For the ranking functions and some of the analytic functions, ORDER BY is
required as it’s the ordering that determines the results. For other functions, ORDER BY is
optional, but if it's used, it has an impact on the results. For example, using ORDER BY with
SUM lets you compute running totals. (See “Running totals, running counts and moving
averages,” later in this document for examples.)

Window frame specification using RANGE and ROWS lets you apply a function to a subset
of a partition; it was added in SQL Server 2012. RANGE lets you limit the calculation to a
group of rows based on their values for the ordering expression, while ROWS lets you limit
the calculation to a set number of rows around the current row. See “Aggregating subsets

within partitions,” later in this document, for more explanation and examples.

Before digging into the window functions and showing how to use them, it's worth
commenting on the choice of the keyword “OVER,” which may seem odd. I'm fairly certain
the term is drawn from mathematics, where it’s used to refer to the domain of a function.
That is, a function that applies to the integers is sometimes referred to as a function “over

the integers.”

The same idea applies here, because we’re specifying the domain for the function using

PARTITION, ORDER and window frame.

In the rest of this paper, we’ll look at each group of functions; along the way, we’ll explore
PARTITION, ORDER and window frames in detail. VFP examples in this paper use the
Northwind database; SQL Server examples use the AdventureWorks 2014 database; those

Copyright 2015, Tamar E. Granor

Page 6 of 55

Going OVER and Above with SQL

examples that work in earlier versions can be run against AdventureWorks 2008, but the
results may vary from those shown here. You can download AdventureWorks 2014 from
https://msftdbprodsamples.codeplex.com/releases/view/125550; the same page links to
a ReadMe file with instructions for installation.

CTEs: A quick review

Before digging in, I want to quickly cover common table expressions or CTEs, as they're
generally called. Many of the examples in the rest of this document use CTEs, so I want to
be sure you understand what they are and how they work.

A CTE is a query executed before the main query, in order to collect some data to be used in
the main query. It’s very similar to a derived table (that is, a query in the FROM clause), but
easier to read and more useful. A CTE is easier to read because it’s isolated from the main
query rather than embedded in it. It's more useful because you can refer to the same CTE
multiple times in the main query.

Listing 2 shows the syntax of a query with a CTE. The key elements are the WITH clause
that names the CTE, the AS clause that contains the CTE query, and the main query that
presumably uses the CTE.

Listing 2. A CTE is analogous to a derived table, but more useful.

WITH CTEName [(list of field names)]
AS
(SELECT <rest of query>)

SELECT <field list>
FROM <tables, presumably including CTEName, and join conditions>
<rest of query>

Listing 3 shows a fairly simple use of a CTE; it’s included in the materials for this session as
AnnualProductSales.SQL. The CTE groups data and the main query joins the grouped data
to an underlying look-up table to provide descriptions. In this case, you could, in fact,
simply add the product name to the field list and the GROUP BY clause and get the same
results, but I think this version is easier to maintain.

Listing 3. Here the CTE computes annual sales totals for each product, and the main query adds the product
name.

WITH csrSalesByProduct (ProductID, nYear, TotalSales)
AS
(SELECT ProductID, YEAR(OrderDate), SUM(LineTotal)
FROM [Sales].[SalesOrderHeader] SOH
JOIN [Sales].[SalesOrderDetail] SOD
ON SOH.SalesOrderID = SOD.SalesOrderDetailID
GROUP BY ProductID, YEAR(OrderDate))

SELECT SBP.ProductID, Name, nYear, TotalSales
FROM csrSalesByProduct SBP
JOIN Production.Product

Copyright 2015, Tamar E. Granor =~ Page 7 of 55

https://msftdbprodsamples.codeplex.com/releases/view/125550

Going OVER and Above with SQL

ON SBP.ProductID = Product.ProductID
ORDER BY nYear, TotalSales DESC;

Be aware that you can have multiple CTEs in a single query; they’re comma-separated
(following the terminating parenthesis for the CTE definition). Any CTE can list any
preceding CTE in its own FROM clause.

Ranking records

As I indicated, my first foray into OVER was for finding the top N records in each group.
Both VFP and SQL Server include the TOP n clause, which allows you to include in the
result only the first n records that match a query’s filter conditions. But TOP n doesn’t work
when what you really want is the TOP n for each group in the query.

Suppose a company wants to know its top five salespeople for each year in some period. In
VFP, you need to combine SQL with Xbase code or use a trick to get the desired results.
With SQL Server, thanks to OVER, you can do it with a single query.

The VFP solution

Collecting the basic data you need to solve this problem in VFP is straightforward. Listing 4
(EmployeeSalesByYear.PRG in the materials for this session) shows a query that provides
each employee’s sales by year; Figure 1 shows part of the results.

Listing 4. Getting total sales by employee by year is easy in VFP.

SELECT FirstName, LastName, ;
YEAR(OrderDate) as OrderYear, ;
SUM(UnitPrice*Quantity) AS TotalSales ;
FROM Employees ;
JOIN Orders ;
ON Employees.EmployeeID = Orders.EmployeelD ;
JOIN OrderDetails ;
ON Orders.OrderID = OrderDetails.OrderID ;
GROUP BY 1, 2, 3 ;
ORDER BY OrderYear, TotalSales DESC ;
INTO CURSOR csrEmployeeSalesByYear

Firstname Lastname Orderyear Totalsales

E‘eacock 1296 53114.8000
Nancy Davolio 19%6 38789.0000
Laura Callahan 19%¢ 231e1.4000
Andrew Fuller 19%¢ 22834.7000
Steven Buchanan 19%¢ 21965.2000
Janet Leverling 19%¢6 1%231.8000
Robert King 15856 18104.8000
Michael |Suyama 1956 17731.1000
Anne Dodsworth 19%¢ 11365.7000
Margaret | Peacock 1897 139477.7000
Janet Leverling 1997 111788.6100

Figure 1. The query in Listing 4 produces the total sales for each employee by year.

Copyright 2015, Tamar E. Granor =~ Page 8 of 55

Going OVER and Above with SQL

However, when you want to keep only the top five for each year, you need to either
combine SQL code with some Xbase code or use a bit of a trick that can result in a
significant slowdown with large datasets.

SQL plus Xbase

The mixed solution is easier to follow, so let’s start with that one. The idea is to first select
the raw data needed, in this case, the total sales by employee by year. Then we loop
through on the grouping field, and select the top n (five, in this case) in each group and put
them into a cursor. Listing 5 (TopnEmployeeSalesByYear-Loop.PRG in the materials for
this session) shows the code; Figure 2 shows the result.

Listing 5. One way to find the top n in each group is to collect the data, then loop through it by group.

SELECT EmployeelD, ;
YEAR(OrderDate) as OrderYear, ;
SUM(UnitPrice*Quantity) AS TotalSales ;
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID = OrderDetails.OrderID ;
GROUP BY 1, 2 ;
INTO CURSOR csrEmpSalesByYear

CREATE CURSOR csrTopEmployeeSalesByYear ;
(FirstName C(10), LastName C(20), ;
OrderYear N(4), TotalSales Y)

SELECT distinct OrderYear ;
FROM csrEmpSalesByYear ;
INTO CURSOR csrYears

LOCAL nYear

SCAN
nYear = csrYears.OrderYear

INSERT INTO csrTopEmployeeSalesByYear ;
SELECT TOP 5 FirstName, LastName, OrderYear, TotalSales ;
FROM Employees ;
JOIN csrEmpSalesByYear ;
ON Employees.EmployeeID = csrEmpSalesByYear.EmployeelD ;
WHERE csrEmpSalesByYear.OrderYear = m.nYear ;
ORDER BY OrderYear, TotalSales DESC

ENDSCAN
USE IN csrYears

USE IN csrEmpSalesByYear
SELECT csrTopEmployeeSalesByYear

Copyright 2015, Tamar E. Granor =~ Page 9 of 55

Going OVER and Above with SQL

Csrtopemployeesalesbyyear EI@
Firstname Lastname Orderyear Totalsales -
_. peacock 1996 53114.8000 |
| Nancy Davolio 1996 38789.0000
Laura Callahan 18%6 231€1.4000
Endrew Fuller 1596 22834.7000
Steven Buchanan 1996 21965.2000
Margaret | Peacock 1997 139477.7000
Janet Leverling 1997 111788.6100
Nancy Davolio 1997 87533.5800
Endrew Fuller 1997 74358.6000
Robert King 1997 66689.1400
Janet Leverling 1598 82030.8500
Andrew Fuller 1998 79955.9600
Nancy Dawvolio 15998 65821.1300
Margaret | Peacock 1598 57594 .9500
Robert King 1998 56502.0500 i
I P »

Figure 2. The query in Listing 5 produces these results

The first query is just a simpler version of Listing 4, omitting the Employees table and the
ORDER BY clause; both of those are used later. Next, we create a cursor to hold the final
results. Then, we get a list of the years for which we have data. Finally, we loop through the
cursor of years and, for each, grab the top five salespeople for that year, and put them into
the result cursor, adding the employee’s name and sorting as we insert.

You can actually consolidate this version a little by turning the first query into a derived
table in the query inside the INSERT command. Listing 6 (TopnEmployeeSalesByYear-
Loop2.PRG in the materials for this session) shows the revised version. Note that you have
to get the list of years directly from the Orders table in this version. This version, of course,
gives the same results.

Listing 6. The code in Listing 5 can be reworked to use a derived table to compute the totals for each year.

CREATE CURSOR csrTopEmployeeSalesByYear ;
(FirstName C(10), LastName C(20), ;
OrderYear N(4), TotalSales Y)

SELECT distinct YEAR(OrderDate) AS OrderYear ;
FROM Orders ;
INTO CURSOR csrYears

LOCAL nYear

SCAN
nYear = csrYears.OrderYear

INSERT INTO csrTopEmployeeSalesByYear ;
SELECT TOP 5 FirstName, LastName, OrderYear, TotalSales ;
FROM Employees ;
JOIN (;
SELECT EmployeelD, ;
YEAR(OrderDate) as OrderYear, ;
SUM(UnitPrice * Quantity) AS TotalSales ;
FROM Orders ;

Copyright 2015, Tamar E. Granor ~ Page 10 of 55

Going OVER and Above with SQL

JOIN OrderDetails ;

ON Orders.OrderID = OrderDetails.OrderID ;

WHERE YEAR(OrderDate) = m.nYear ;

GROUP BY 1, 2) csrEmpSalesByYear ;
ON Employees.EmployeeID = csrEmpSalesByYear.EmployeeID ;
ORDER BY OrderYear, TotalSales DESC

ENDSCAN

USE IN csrYears
SELECT csrTopEmployeeSalesByYear

SQL-only

The alternative VFP solution uses only SQL commands, but relies on a trick of sorts. Like
the mixed solution, it starts with a query to collect the basic data needed. It then joins that
data to itself in a way that results in multiple records for each employee/year combination
and uses GROUP BY and HAVING to keep only those that represent the top n records.
Finally, it adds the employee name. Listing 7 (TopNEmployeeSalesByYear-Trick.prg in the
materials for this session) shows the code.

Listing 7. This solution uses only SQL, but requires a tricky join condition.

SELECT EmployeelD, ;
YEAR(OrderDate) as OrderYear, ;
SUM(UnitPrice * Quantity) AS TotalSales ;
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID = OrderDetails.OrderID ;
GROUP BY 1, 2 ;
INTO CURSOR csrEmpSalesByYear

SELECT FirstName, LastName, OrderYear, TotalSales ;
FROM Employees ;
JOIN (;
SELECT ESBY1l.EmployeeID, ESBY1l.OrderYear, ESBYl.TotalSales ;
FROM csrEmpSalesByYear ESBY1 ;
JOIN csrEmpSalesByYear ESBY2 ;
ON ESBY1.0OrderYear = ESBY2.OrderYear ;
AND ESBY1l.TotalSales >= ESBY2.TotalSales ;
GROUP BY 1, 2, 3 ;
HAVING COUNT(*) <= 5) csrTop5;
ON Employees.EmployeeID = csrTop5.EmployeelD ;
ORDER BY OrderYear, TotalSales DESC ;
INTO CURSOR csrTopEmployeeSalesByYear

The first query here is just a variant of Listing 4. The key portion of this approach is the
derived table in the second query, in particular, the join condition between the two
instances of csrEmpSalesByYear, shown in Listing 8. Records are matched up first by
having the same year and then by having sales in the first instance of the table be the same
or more than sales in the second instance. This join condition results in a single record for
the employee from that year with the highest sales total, two records for the employee with
the second highest sales total and so on.

Copyright 2015, Tamar E. Granor =~ Page 11 of 55

Going OVER and Above with SQL

Listing 8. The key to this solution is the unorthodox join condition between two instances of the same table.

FROM csrEmpSalesByYear ESBY1 ;
JOIN csrEmpSalesByYear ESBY2 ;
ON ESBY1.OrderYear = ESBY2.OrderYear ;
AND ESBY1l.TotalSales >= ESBY2.TotalSales

The GROUP BY and HAVING clauses then combine all the records for a given employee and
year, and keeps only those where the number of records in the intermediate result is five or
fewer (that is, where the count of records in the group is five or less), providing the top five
salespeople for each year.

To make more sense of this solution, first consider the query in Listing 9 (included in the
materials for this session as TopNEmployeeSalesByYearBeforeGrouping.prg). It assumes
we’ve already run the query to create the EmpSalesByYear cursor. It shows the results
from the derived table in Listing 7 before applying GROUP BY. In the partial results shown
in Figure 3, you can see one record for employee 9 in 1996, two for employee 6, three for
employee 7 and so forth. (If this still doesn’t make sense, try adding the fields
ESBY2.EmployeelD and ESBY2.TotalSales to the field list, so you can see that each row
represents an employee with the same or lower total sales as the one you're looking at.)

Listing 9. This query demonstrates the intermediate results for the derived table in Listing 7

SELECT ESBY1l.EmployeeID, ESBYl.OrderYear, ESBYl.TotalSales ;
FROM EmpSalesByYear ESBY1 ;
JOIN EmpSalesByYear ESBY2 ;
ON ESBY1.0rderYear = ESBY2.OrderYear ;
AND ESBY1l.TotalSales >= ESBY2.TotalSales ;
ORDER BY ESBY1l.OrderYear, ESBYl.TotalSales ;
INTO CURSOR csrIntermediate

Employeeid Orderyear Totalsales
1996 11365.7000

6 15996 17731.1000
& 1556 17731.1000
7 1996 18104.8000
7 1956 18104.8000
7 1556 18104.8000
3 15996 1%231.8000
3 1556 15231.8000
3 1996 19231.8000
3 1956 16231.8000
c 1008 I NDES INNn

Figure 3. The query in Listing 9 unfolds the data that’s grouped in the derived table.

The problem with this approach to the problem is that, as the size of the original data
increases, it can get bogged down. So while this solution has a certain elegance, in the long
run, a SQL plus Xbase solution is probably a better choice.

Copyright 2015, Tamar E. Granor =~ Page 12 of 55

Going OVER and Above with SQL

The SQL Server solution

Finding the top 5 salespeople for each year in SQL Server uses a couple of CTEs and the
OVER clause with one of the ranking functions. To work through the steps involved, though,
we’ll start with a slightly easier TOP n by group problem: find the three longest-standing
employees in each department.

To do this, we want to rank records within a group and then keep the first n. My first
instinct was to use the ROW_NUMBER function, which, as its name suggests, returns the
row number of a record within a group (or the entire result set, if no grouping is specified).

For example, Listing 10 (included in the materials for this session as
EmployeeOrderNumber.SQL) shows a query that lists AdventureWorks employees in the
order they were hired, giving each an "employee order number." Here, the data is ordered
by HireDate and then ROW_NUMBER applied to provide the position of each record. Figure
4 shows partial results.

Listing 10. Using ROW_NUMBER with OVER lets you give records a rank.

SELECT FirstName, LastName, HireDate,
ROW_NUMBER() OVER (ORDER BY HireDate) AS EmployeeOrderNumber
FROM HumanResources.Employee
JOIN Person.Person
ON Employee.BusinessEntityID = Person.BusinessEntityID;

FirstName LastName HireDate EmployeeCrderNumber
. Gilbert 2006-06-30 1
Kevin Brown 2007-01-26 2

Roberto Tamburello 2007-11-11 3

Rob Walters 2007-12-05 4

Thierry D'Hers 200712-11 5

David Bradley 20071220 6

JoLynn Dobney 20071226 7

Ruth Ellerbrock 2008-01-06 8

Gail Erickson 2008-01-06 9

Barry Johnson 2008-01-07 10

Jossef Goldberg 2008-01-24 11

Terri Duffy 2008-01-31 12

Sidney Higa 2008-02-02 13

Figure 4. The query in Listing 10 applies a rank to each employee by hire date.

But look at Ruth Ellerbock and Gail Erickson; they have the same hire date, but different
values for EmployeeOrderNumber. Sometimes, that’s what you want, but sometimes, you
want such records to have the same value.

The ROW_NUMBER function doesn’t know anything about ties. However, the RANK
function is aware of ties and assigns them the same value, and then skips the appropriate
number of values. Listing 11 (EmployeeRank.SQL in the materials for this session) shows
the same query using RANK instead of ROW_NUMBER; Figure 5 shows the first few

Copyright 2015, Tamar E. Granor =~ Page 13 of 55

Going OVER and Above with SQL

records. This time, you can see that Ellerbock and Erickson have the same rank, 8, while
Barry Johnson, who immediately follows them, still has a rank of 10.

Listing 11. The RANK function is aware of ties, assigning them the same value.

SELECT FirstName, LastName, HireDate,
RANK() OVER (ORDER BY HireDate) AS EmployeeOrderNumber
FROM HumanResources.Employee
JOIN Person.Person
ON Employee.BusinessEntityID = Person.BusinessEntityID;

FirstiNeme LastName HireDate EmployeeRank
. Gilbert 2006-06-30

Brown 2007-01-26 2
Roberto Tamburello 2007-11-11 3
Rob Walters 2007-12-05 4
Thierry D'Hers 2007-12-11 5
Dawid Bradley 2007-12-20 6
JoLynn Dobney 2007-12-26 7
Ruth Ellerbrock 2008-01-06 8
Gail Erickson 2008-01-06 8
Barry Johnson 2008-01-07 10
Jossef Goldberg 2008-01-24 11
Terri Duffy 2008-01-31 12
Sidney Higa 2008-02-02 13

Figure 5. Using RANK assigns the same EmployeeRank to records with the same hire date.

You can’t say that either ROW_NUMBER or RANK is right; which one you want depends on
the situation. In fact, there’s a third related function, DENSE_RANK that behaves like RANK,
giving ties the same value, but then continues numbering in order. That is, if we used
DENSE_RANK in this example, Barry Johnson would have a rank of 9, rather than 10.

Partitioning with OVER

In addition to specifying ordering, OVER also allows us to divide the data into groups
before applying the function, using the PARTITION BY clause. The query in Listing 12
(included in the materials for this session as EmployeeRankByDept.SQL) assigns employee
ranks within each department rather than for the company as a whole by using both
PARTITION BY and ORDER BY. We're now using the StartDate field of
EmployeeDepartmentHistory rather than the HireDate field, because we want to know
when the employee joined the department, not when she was hired. (Note that we also look
only at records where EndDate is null, so that we consider only people’s current
assignments.) Figure 6 shows partial results; note that the numbering begins again for
each department and, as before, that ties have the same value.

Listing 12. Combining PARTITION BY and ORDER BY in the OVER clause lets you apply ranks within a group.
SELECT FirstName, LastName, StartDate,

Department.Name,
RANK() OVER

Copyright 2015, Tamar E. Granor ~ Page 14 of 55

Going OVER and Above with SQL

(PARTITION BY Department.DepartmentID ORDER BY StartDate) AS EmployeeRank

FROM HumanResources.Employee
JOIN HumanResources.EmployeeDepartmentHistory

ON Employee.BusinessEntityID = EmployeeDepartmentHistory.BusinessEntityID
JOIN HumanResources.Department

ON EmployeeDepartmentHistory.DepartmentID = Department.DepartmentID
JOIN Person.Person

ON Employee.BusinessEntityID = Person.BusinessEntityID
WHERE EndDate IS null;

FirstName LastName StartDate Name EmployeeRank
' Roberto : Temburello 2007-11-11 Engineering 1
Gall Erickson 2008-01-06 Engineering 2

Jossef Goldberg 2008-01-24 Engineering 3

Terr Duffy 2008-01-31 Engineering 4

Michael Sullivan 2010-12-30 Engineering 35

Sharon Salavaria 2011-01-18 Engineering &

Thierry D'Hers 2007-12-11 Tool Design 1

Rob Walters 2010-05-31 Tool Design 2

Owidiu Cracium 2010-12-05 Tool Design 3

Janice Galvin 2010-12-23 Tool Design 4

Stephen Jiang 2011-01-04 Sales 1

Brian Welcker 2011-02-153 Sales 2

Michael Blythe 2011-05-31 Sales 3

Linda Mitchell 2011-05-31 Sales 3

Jillian Carson 2011-05-31 Sales 3

Figure 6. Here, employees are numbered within their current department, based on when they started in that
department.

This example should provide a hint as to how we’ll solve the TOP n by group problem, since
we now have a way to number things by group. All we need to do is filter so we only keep
those whose rank within the group is in the range of interest. However, it’s not possible to
filter on the computed field EmployeeOrderNumber in the same query. Instead, we turn
that query into a CTE and filter in the main query, as in Listing 13
(LongestStandingEmployeesByDept.SQL in the materials for this session).

Listing 13. Once we have the rank for an item within its group, we just need to filter to get the TOP n items by
group.

WITH EmpRanksByDepartment AS
(SELECT FirstName, LastName, StartDate,
Department.Name AS Department,
RANK() OVER
(PARTITION BY Department.DepartmentID ORDER BY StartDate) AS EmployeeRank
FROM HumanResources.Employee
JOIN HumanResources.EmployeeDepartmentHistory
ON Employee.BusinessEntityID = EmployeeDepartmentHistory.BusinessEntityID
JOIN HumanResources.Department
ON EmployeeDepartmentHistory.DepartmentID = Department.DepartmentID
JOIN Person.Person
ON Employee.BusinessEntityID = Person.BusinessEntityID

Copyright 2015, Tamar E. Granor ~ Page 15 of 55

Going OVER and Above with SQL

WHERE EndDate IS NULL)

SELECT FirstName, LastName, StartDate, Department
FROM EmpRanksByDepartment
WHERE EmployeeRank <= 3
ORDER BY Department, StartDate;

Figure 7 shows part of the result. Note that there are many more than three records for the
Sales department because a whole group of people started on the same day. If you really
want only three per department and don’t care which records you omit from a last-place
tie, use RECORD_NUMBER instead of RANK.

FirstName LastName StartDate Department

Diane Margheim 2008-12-29 Research and Developm...
Gigi Matthew 2009-01-16 Research and Developm...
Dylan Miller 2009-02-08 Research and Developm...
Stephen Jiang 2011-01-04 Sales

Brian Welcker 2011-02-15 Sales

Michael Blythe 2011-05-31 Sales

Linda Mitchell 2011-05-31 Sales

Jillian Carsan 2011-05-31 Sales

Garrett Vargas 2011-05-31 Sales

Tswvi Reiter 2011-05-31 Sales

Pamela Ansman-Wolfe 2011-05-31 Sales

Shu lto 2011-05-31 Sales

José Saraiva 2011-05-31 Sales

Dawid Campbell 2011-05-31 Sales

Wamsi Kuppa 2008-12-07 Shipping and Receiving

Figure 7. The query in Listing 13 provides the three longest-standing employees in each department. When
there are ties, it may produce more than three results.

Applying the same principle to finding the top five salespeople by year at AdventureWorks
(to match our VFP example) is a little more complicated because we have to compute sales
totals first. To make that work, we first use a CTE to compute those totals and then a
second CTE based on that result to add the ranks. Listing 14 (TopSalesPeopleByYear.SQL
in the materials for this session) shows the complete query.

Listing 14. Finding the top five salespeople by year requires cascading CTEs, plus the OVER clause.

WITH TotalSalesBySalesPerson AS
(SELECT BusinessEntityID, YEAR(OrderDate) AS nYear, SUM(SubTotal) AS TotalSales
FROM Sales.SalesPerson
JOIN Sales.SalesOrderHeader
ON SalesPerson.BusinessEntityID = SalesOrderHeader.SalesPersonID
GROUP BY BusinessEntityID, YEAR(OrderDate)),

RankSalesPerson AS

(SELECT BusinessEntityID, nYear, TotalSales,
RANK() OVER (PARTITION BY nYear ORDER BY TotalSales DESC) AS nRank
FROM TotalSalesBySalesPerson)

Copyright 2015, Tamar E. Granor =~ Page 16 of 55

Going OVER and Above with SQL

SELECT FirstName, LastName, nYear, TotalSales
FROM RankSalesPerson
JOIN Person.Person
ON RankSalesPerson.BusinessEntityID = Person.BusinessEntityID
WHERE nRank <= 5;

The first CTE, TotalSalesBySalesPerson, contains the ID for the salesperson, the year and
that person's total sales for the year. The second CTE, RankSalesPerson, adds rank within
the group to the data from TotalSalesByPerson. Finally, the main query keeps only the top
five in each and adds the actual name of the person. Figure 8 shows partial results.

FirstName LastName nYe... TotalSales
T TR E
Cdilian Carson 2011 1311627.2918

José Saraiva 2011 1175007.4753

Linda Mitchell 2011 1149715.3253

Shu ito 2011 967597.2899

Jillian Carson 2012 4317306.5741

Linda Mitchell 2012 3834908.674

Michael Blythe 2012 3375456.8947

Jae Pak 2012 3014278.0472

Tsvi Reiter 2012 26744363518

Linda Mitchell 2013 4111294.9056

Jae Pak 2013 4106064.0146

Michael Blythe 2013 3985374.8995

Jillian Carson 2013 3396776.2674

Ranijit Varkey Chudukatil 2013 2646078.409

Figure 8. These partial results show the top five salespeople by year.

With the basics covered, let’s look at some other uses for OVER with the ranking functions.

Deduping

One of the most straightforward uses for OVER is identifying and removing duplicate
records. Deduping data is a big question and generally more of a business problem than a
code problem. That is, usually, the problem is having multiple similar, but not identical,
records; for example, some organizations have a record for me alone, as well as one for me
and my husband as a couple. No code alone is going to solve that problem.

However, OVER is very handy for the narrower problem of having records that are
identical in some list of fields. To identify the duplicates, we can partition on the fields that
must be the same to indicate a match, and assign each record in the partition a unique
value. Then, we can delete all the extras.

Because I don’t want to delete records from the sample AdventureWorks database, this
example uses a copy of the Person table, created as shown in Listing 15.

Copyright 2015, Tamar E. Granor =~ Page 17 of 55

Going OVER and Above with SQL

Listing 15. This code creates a temporary table #People containing the primary key and name information
from the AdventureWorks Person table.

CREATE TABLE #People
(PersonID INT, FirstName nVarchar(50),
MiddleName nVarchar(50), LastName nVarchar(50));

INSERT INTO #People
SELECT BusinessEntityID, FirstName, MiddleName, LastName
FROM Person.Person;

The first step in deduping is matching records with the exact same name and assigning
each a different number. You can do that with the query in Listing 16. In this case, we
order the duplicates by their primary key, PersonID, because we need some ordering; you
could use any of the fields in the query in the ORDER BY. Partial results are shown in
Figure 9; note that the two records for Aaron Con are assigned 1 and 2 respectively in the
RecNo column.

Listing 16. This query matches records by name and assigns each a unique number within those with the
same name.

SELECT PersonID, FirstName, MiddleName, LastName,
ROW_NUMBER() OVER
(PARTITION BY FirstName, MiddleName, LastName
ORDER BY PersonID) As RecNo
FROM #People;

_F“erscl-nID_FirstName MiddleMName LastName RecNo

A Francesca Leonetti 1
2321 A Scott Wright 1
222 A. Scott NULL Wright 1
5508 Aaron NULL Alexander 1
5504 Aaron NULL Bryant 1
5500 Aaron NULL Butler 1
5519 Aaron NULL Chen 1
5488 Aaron NULL Caoleman 1
727 Aaron NULL Con 1
2272 Aaron NULL Con 2
15693 Aaron NULL Edwards 1
5496 Aaron NULL Flores 1
5502 Aaron NULL Foster 1
5503 Aaron NULL Gonzales 1
5512 Aaron NULL Griffin 1

Figure 9. The instances of each name are numbered, starting at 1, providing a way to identify duplicates.

To dedupe the #People table, we need to delete all the records where RecNo is greater than
1. The solution uses a CTE and the SQL DELETE command. The CTE is similar to the query
in Listing 16, but doesn’t include the name fields in its field list. The full query to dedupe the
table is shown in Listing 17.

Copyright 2015, Tamar E. Granor =~ Page 18 of 55

Going OVER and Above with SQL

Listing 17. To remove exact duplicates from a table, use ROW_NUMBER to number each copy and then delete
all those whose number is not 1.

WITH csrFindDups (PersonID, RecNo)
AS
(SELECT PersonlID,
ROW_NUMBER() OVER
(PARTITION BY FirstName, MiddleName, LastName
ORDER BY PersonID)
FROM #People)

DELETE FROM #People
WHERE PersonID IN (SELECT PersonID FROM csrFindDups WHERE RecNo > 1);

The materials for this session include DeDupe.SQL, which creates the #People table,
dedupes it, and then deletes it. To demonstrate that it works, it shows the count for the
table before and after deduping.

Which function to use?

As indicated above, there are three functions that return similar, but not identical results:
ROW_NUMBER, RANK, and DENSE_RANK. We’ve seen examples for ROW_NUMBER
(deduping) and RANK (finding the top N), but when else would you use these and how do
you know which one to use?

Another use for ROW_NUMBER is randomly ordering groups. The idea is to assign each
record a random number and then use ROW_NUMBER against that field to generate a
random ordering.

The first step, assigning each record a random number, is a little harder than you might
expect. Calling SQL Server’s RAND function with no parameters in a query produces the
same result on each row. That is, SQL Server collapses it to a single call. There are a variety
of solutions (see, for example, http://tinyurl.com/n58svm5), but most of them boil down to
using CHECKSUM(NEWID())). Listing 18 (included in the materials for this session as
RandomOrderInDept.SQL) demonstrates the one that looks best to me. The CTE calls
RAND, passing CHECKSUM(NEWID()) as a seed, thus ensuring that the function is called for
each row. The main query applies ROW_NUMBER to the random field. Figure 10 shows
partial results; note that the results will change each time you run the query.

Listing 18. You can use ROW_NUMBER to randomly order records within groups.

WITH EmpsByDept (BusinessEntityID, StartDate, DepartmentID, RandVal)
AS
(SELECT BusinessEntityID, StartDate, DepartmentID, RAND(CHECKSUM(NEWID()))

FROM HumanResources.EmployeeDepartmentHistory

WHERE EndDate IS null
)
SELECT FirstName, LastName, StartDate, Department.Name,

ROW_NUMBER() OVER (PARTITION BY Department.DepartmentID ORDER BY RandVal) AS

EmployeeRand

FROM EmpsByDept

Copyright 2015, Tamar E. Granor ~ Page 19 of 55

http://tinyurl.com/n58svm5

Going OVER and Above with SQL

JOIN HumanResources.Department
ON EmpsByDept.DepartmentID = Department.DepartmentID
JOIN Person.Person
ON EmpsByDept.BusinessEntityID = Person.BusinessEntityID
ORDER BY Name, EmployeeRand;

_FirstName LastName StartDate Name EmployeeRand

MNorred 2008-03-06 Document Control 1
Zainal Arifin 2009-01-04 Document Control 2
Tengiz Kharatishwvili 2008-12-16 Document Control 3
Karen Berge 2009-02-09 Document Control 4
Sean Chai 2008-01-22 Document Control]
Jossef Goldberg 2008-01-24 Engineering 1
Sharon Salavaria 2011-01-18 Engineering 2
Michael Sullivan 2010-12-30 Engineering 3
Gail Erickson 2008-01-06 Engineering 4
Roberto Tamburello 2007-11-11 Engineering 5
Terr Duffy 2008-01-31 Engineering 6
Ken Sanchez 2008-01-14 Bxecutive 1
Laura MNorman 2013-11-14 Bxecutive 2
Gary Altman 2009-12-02 Facilities and Maintenance 1
Magnus Hedlund 2009-12-21 Facilities and Maintenance 2

Figure 10. Applying ROW_NUMBER to a randomly generated field lets you randomly order each group.

Another use for ROW_NUMBER is paging records, as you might for a website. You can use
ROW_NUMBER to number the records in a CTE and then return only the rows in the range
for the specified page.

DENSE_RANK is useful when you want to number distinct values for the ordering criteria.
Suppose you want to get a list of the current job titles in each department and number
them alphabetically. You only want to list each job title once, so this calls for SELECT
DISTINCT. Your first attempt might be the query in Listing 19. As the partial results in
Figure 11 indicate, it doesn’t work; once a row number is added, each row is different, so
DISTINCT doesn’t remove any records.

Listing 19. ROW_NUMBER and DISTINCT don’t mix, because the unique values returned by ROW_NUMBER
make rows that should be the same different from each other.

SELECT DISTINCT Name, JobTitle,
ROW_NUMBER() OVER
(PARTITION BY Department.DepartmentID ORDER BY JobTitle) AS JobNum
FROM [HumanResources].[EmployeeDepartmentHistory]
JOIN [HumanResources].[Department]
ON EmployeeDepartmentHistory.DepartmentID = Department.DepartmentID
JOIN [HumanResources].[Employee]
ON EmployeeDepartmentHistory.BusinessEntityID = Employee.BusinessEntityID
WHERE EndDate IS null;

Copyright 2015, Tamar E. Granor ~ Page 20 of 55

Going OVER and Above with SQL

Name

Document Control

Document Control
Document Control
Document Control
Document Control
Engineering
Engineering
Engineering
Engineering
Engineering
Engineering
Executive
Executive
Facilities and Maintenance

Facilities and Maintenance

Figure 11. When you use ROW_NUMBER with SELECT DISTINCT, rows that should be the same are different.

The solution is to use DENSE_RANK instead, as in Listing 20 (Numbered]obTitles.SQL in
the materials for this session). Since rows that otherwise match are given the same value
by DENSE_RANK, they can then be removed by DISTINCT. Figure 12 shows partial results;
as you can see, each job title is listed only once for each department.

Listing 20. DENSE_RANK assigns the same value to matching rows, which allows DISTINCT to remove

duplicates.

JobTitle

Control Specialist

Control Specialist
Document Control Assistant
Document Control Assistant
Document Control Manager
Design Engineer

Design Engineer

Design Engineer
Engineering Manager
Senior Design Engineer
Vice President of Engineering
Chief Executive Officer
Chief Financial Officer

Facilities Administrative Assistant

Facilities Manager

SELECT DISTINCT Name, JobTitle,
DENSE_RANK() OVER

(PARTITION BY Department.DepartmentID ORDER BY JobTitle) AS JobSerial

JobMNum

[RS N, TR o = B &) S SR O B % TSR | BN S T Y, Q—y

FROM [HumanResources].[EmployeeDepartmentHistory]
JOIN [HumanResources].[Department]

ON EmployeeDepartmentHistory.DepartmentID = Department.DepartmentID

JOIN [HumanResources].[Employee]

ON EmployeeDepartmentHistory.BusinessEntityID = Employee.BusinessEntityID

WHERE EndDate IS null;

Copyright 2015, Tamar E. Granor

Page 21 of 55

Going OVER and Above with SQL

Name JobTitle JobSerial
Document Control Control Specialist 1
Document Control Document Control Assistant 2
Document Control Document Control Manager 3
Engineering Design Engineer T
Engineering Engineering Manager 2
Engineering Senior Design Engineer 3
Engineering Vice President of Engineering 4
Executive Chief Executive Officer 1
Executive Chief Financial Officer 2
Facilities and Maintenance Facilities Administrative Assistant 1
Facilities and Maintenance Facilities Manager 2
Facilities and Maintenance Janitor 3
Facilities and Maintenance Maintenance Supervisor 4
Finance Accountant 1
Finance Accounts Manager 2

Figure 12. The JobSerial field, created with DENSE_RANK, numbers each distinct job in each department.

Dividing into percentiles

The final function in the Ranking group, NTILE, divides the records in each partition as
evenly as possible into a specified number of groups. The function takes a single parameter
that indicates the number of groups to create. For example, the query in Listing 21
(SalesQuartiles.SQL in the materials for this session) computes the total sales for each
salesperson by year, and then divides each year’s sales into four groups (quartiles) from
highest to lowest. Figure 13 shows partial results; as you can see, when the number of
records in the partition can’t be divided evenly into the specified number of groups, earlier
groups get an extra record.

Listing 21. The NTILE function divides each partition into a specified number of groups.

WITH csrAnnualSales (SalesPersonID, OrderYear, TotalSales)

AS

(SELECT SalesPersonID, YEAR(OrderDate), SUM(SubTotal) AS TotalSales
FROM [Sales].[SalesOrderHeader]
WHERE SalesPersonID IS NOT NULL
GROUP BY SalesPersonID, YEAR(OrderDate))

SELECT SalesPersonID, OrderYear, TotalSales,
NTILE(4) OVER (PARTITION BY OrderYear ORDER BY TotalSales DESC) AS Quartile
FROM csrAnnualSales

Copyright 2015, Tamar E. Granor ~ Page 22 of 55

Going OVER and Above with SQL

SalesPersonlD OrderYear TotalSales Quartile
2?9 2011 \o21285.1881 | 1
T — 2011 3116272918 | 1
282 2011 1173007.4753 1
276 2011 1149715.3253 2
231 2011 967597.25899 2
275 2011 8758238318 2
280 2011 648485 5862 3
283 2011 599987.9444 3
278 2011 500091.3202 4
274 2011 28926.2465 4
277 2012 43173065741 1
276 2012 3834908674 1
275 2012 3375456.8947 1
239 2012 3014273.0472 1

Figure 13. NTILE makes the groups as even as possible. Here, there are 10 records for 2011, so groups 1 and
2 have 3 records each, while groups 3 and 4 have 2 apiece.

If you change the parameter to NTILE() to 5 (as in Listing 22), you get quintiles instead of
quartiles, as in Figure 14.

Listing 22. The parameter to NTILE() determines how many groups the records in each partition are divided
into.

NTILE(5) OVER (PARTITION BY OrderYear ORDER BY TotalSales DESC) AS Quintile

SalesPersonlD OrderYear TotalSales Quintile
2?9 2011 oo 12651881 | ;
2?? 2011 13116272818 1

282 2011 1175007.4753 2

276 2011 11497153253 2

281 2011 967597.2899 3

275 2011 875823.8318 3

280 2011 6484855862 4

283 2011 599957 9444 4

278 2011 500091.8202 5

274 2011 28926.2465 5

277 2012 43173065741 1

276 2012 3834908.674 1

275 2012 3375456.8947 1

289 2012 30142750472 2

279 2012 2674436.3518 2

Figure 14. Here, 5 was passed to NTILE(), so there are five groups for each year. As before, the group sizes
are as even as possible.

Later in this paper (see “Searching by percentile”), we’ll look at functions that let you ask
where the diving point is between various percentiles.

Copyright 2015, Tamar E. Granor ~ Page 23 of 55

Going OVER and Above with SQL

Aggregate functions

The aggregate functions are usually used in conjunction with GROUP BY to compute things
like total sales for each salesperson each year, or the number of days each student has been
absent each semester. At first glance, it would appear that using aggregate functions with
OVER would do the same thing, but there are some important differences.

First, using OVER, you can aggregate on different groups within a single query. For
example, the query in Listing 23 computes the yearly, monthly and daily number sold for
each product; Figure 15 shows a portion of the results. The results show the other
significant difference between aggregating by GROUP BY and aggregating by OVER. With
GROUP BY, you end up with a single record for each group. With OVER, you get whatever
records the JOIN and WHERE clauses give you, but they contain aggregated results.

Listing 23. Combine OVER with the aggregate functions to aggregate by different groups in a single query.

SELECT OrderDate, ProductlID,
SUM(SOD.OrderQty) OVER
(PARTITION BY SOD.ProductID, YEAR(OrderDate)) AS Yearly,
SUM(SOD.OrderQty) OVER
(PARTITION BY SOD.ProductID, YEAR(OrderDate), MONTH(OrderDate)) AS Monthly,
SUM(SOD.OrderQty) OVER (PARTITION BY SOD.ProductID, OrderDate) AS Daily
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON SOH.SalesOrderID = SOD.SalesOrderID
ORDER BY ProductID, OrderDate;

Orderdate ProductlD Yearly Maonthly Daily
2014-05-19 00:00:00.000 998 580 127 2
2014-05-19 00:00:00.000 998 550 127 2
2014-05-20 00:00:00.000 998 550 127 1
2014-05-21 00:00:00.000 998 550 127 2
2014-05-21 00:00:00.000 998 550 127 2
2014-05-26 00:00:00.000 995 550 127 1
2014-05-27 00:00:00.000 995 550 127 2
2014-05-27 00:00:00.000 998 550 127 2
2014-05-28 00:00:00.000 998 550 127 1
2014-05-29 00:00:00.000 998 550 127 1
2014-05-30 00:00:00.000 998 550 127 1
2013-05-30 00:00:00.000 999 826 98 97
2013-05-30 00:00:00.000 999 826 98 97
2013-05-30 00:00:00.000 999 826 98 97
2013-05-30 00:00:00.000 999 826 98 97

Figure 15. When you use OVER for aggregation, you get all the records you’d get without it.

In this example, if you want to see just one record for each date, add DISTINCT to the query,
as in Listing 24 (included in the materials for this session as SalesByYearMonthDay.SQL).
Figure 16 shows partial results.

Listing 24. Adding DISTINCT to the query gives us one record per date, but still includes yearly, monthly and
daily totals.

SELECT DISTINCT Orderdate, ProductID,

Copyright 2015, Tamar E. Granor ~ Page 24 of 55

Going OVER and Above with SQL

SUM(SOD.OrderQty) OVER
(PARTITION BY SOD.ProductID, YEAR(OrderDate)) AS Yearly,
SUM(SOD.OrderQty) OVER
(PARTITION BY SOD.ProductID, YEAR(OrderDate), MONTH(OrderDate)) AS Monthly,
SUM(SOD.OrderQty) OVER (PARTITION BY SOD.ProductID, OrderDate) AS Daily
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON SOH.SalesOrderID = SOD.SalesOrderID
ORDER BY ProductID, OrderDate

Orderdate ProductiD Yearly Monthly Daily
2014-05-19 00:00:00.000 998 580 127 2
2014-05-20 00:00:00.000 998 580 127 1
2014-05-21 00:00:00.000 998 580 127 2
2014-05-26 00:00:00.000 998 580 127 1
2014-05-27 00:00:00.000 998 580 127 2
2014-05-28 00:00:00.000 998 580 127 1
2014-05-29 00:00:00.000 998 580 127 1
2014-05-30 00:00:00.000 998 580 127 1
2013-05-30 00:00:00.000 999 826 95 97
2013-05-31 00:00:00.000 999 826 95 1
2013-06-02 00:00:00.000 999 826 117 1
2013-06-06 00:00:00.000 999 826 117 1
2013-06-07 00:00:00.000 999 826 117 1
2013-06-09 00:00:00.000 999 826 117 1
2013-06-10 00:00:00.000 999 826 117 1

Figure 16. The query in Listing 24 results in one record per date, each holding yearly, monthly and daily
totals.

Computing percentages

You can use OVER to compute what percent of a total a particular record represents.
Listing 25 builds on the previous example to indicate what percent of annual and monthly
sales for the product a given day’s sales represent. The number sold for the day is divided
by the number sold in the month or year; that value is then multiplied by 100 and cast as a
decimal to show the percentage. Figure 17 shows partial results. The query is included in
the materials for this session as SalesByYearMonthDayWithPcts.SQL.

Listing 25. In this query, OVER is used with SUM() to figure out what percent of a product’s monthly and
yearly sales came on a particular day.

SELECT DISTINCT Orderdate, ProductID,

SUM(SOD.OrderQty) OVER

(PARTITION BY SOD.ProductID, YEAR(OrderDate)) AS Yearly,
SUM(SOD.OrderQty) OVER

(PARTITION BY SOD.ProductID, YEAR(OrderDate), MONTH(OrderDate)) AS Monthly,
SUM(SOD.OrderQty) OVER (PARTITION BY SOD.ProductID, OrderDate) AS Daily,
CAST(1. * SUM(OrderQty) OVER (PARTITION BY SOD.ProductID, OrderDate)

/ SUM(SOD.OrderQty) OVER (PARTITION BY SOD.ProductID, YEAR(OrderDate))

* 100 AS decimal(5,2)) AS PctOfYear,
CAST(1. * SUM(OrderQty) OVER (PARTITION BY SOD.ProductID, OrderDate)

/ SUM(SOD.OrderQty) OVER

(PARTITION BY SOD.ProductID, YEAR(OrderDate), Month(OrderDate))
* 100 AS decimal(5,2)) AS PctOfMonth

Copyright 2015, Tamar E. Granor =~ Page 25 of 55

Going OVER and Above with SQL

FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON SOH.SalesOrderID = SOD.SalesOrderID
ORDER BY OrderDate, ProductID;

Orderdate ProductlD Yearly Monthly Daily PctOfYear PctOfMonth
52011—05—31 00:00:00.000 707 331 24 24 725 100.00
2011-07-01 00:00:00.000 707 331 58 58 17.52 100.00
2011-08-01 00:00:00.000 707 331 a6 55 16.62 57.29
2011-08-31 00:00:00.000 707 331 a6 4 12.39 4271
2011-10-01 00:00:00.000 707 331 141 77 2326 54 61
2011-10-31 00:00:00.000 707 331 141 64 19.34 45.39
2011-12-01 00:00:00.000 707 331 12 12 3.63 100.00
2012-01-01 00:00:00.000 707 1278 61 31 243 50.82
2012-01-29 00:00:00.000 707 1278 61 30 235 4918
2012-02-29 00:00:00.000 707 1278 27 27 21 100.00
2012-03-30 00:00:00.000 707 1278 93 93 7.28 100.00
2012-04-30 00:00:00.000 707 1278 52 52 4.07 100.00
2012-05-30 00:00:00.000 707 1278 162 162 1268 100.00
2012-06-30 00:00:00.000 707 1278 214 214 16.74 100.00
2012-07-31 00:00:00.000 707 1278 197 197 1541 100.00

Figure 17. You can use OVER to compute what percent of a group total a particular value or subset
represents. Here, the day’s sales are computed as a percentage of the annual and monthly sales for the
product.

Counting groups

Use OVER with COUNT to put the size of a group into the records in the group. For example,
suppose you're preparing a staff directory to be sorted alphabetically with a break after the
employees beginning with each initial letter. In order to have a good layout, you might want
to know how many staff members begin with a given letter. The query in Listing 26
(CountBylInitial.SQL in the materials for this session) gives you what you need; Figure 18
shows partial results.

Listing 26. By partitioning by the first letter of the last name, COUNT tells how many records begin with the
same letter.

SELECT LEFT(LastName,1) AS Initial, LastName, FirstName,
COUNT(*) OVER (PARTITION BY LEFT(LastName,1)) AS CountByInitial
FROM Person.Person
JOIN HumanResources.Employee
ON Person.BusinessEntityID = Employee.BusinessEntityID
ORDER BY LastName, FirstName;

Copyright 2015, Tamar E. Granor ~ Page 26 of 55

Going OVER and Above with SQL

Initial LastName FirstName CountBylnitial

| Abbas Syed 13

A Abercrombie Kim 13
A Abolrous Hazem 13
A Ackerman Pilar 13
A Adams Jay 13
A Ajenstat Francois 13
A Alberts Amy 13
A Alderson Greg 13
A Alexander Sean 13
A Altman Gary 13
A Anderson Nancy 13
A Ansman-Wolfe Pamela 13
A Arifin Zainal 13
B Bacon Dan 20
B Raker RBrvan 20

Figure 18. The CountBylInitial column indicates how many names begin with the same letter as the current
record. Having that value can be useful for layout.

Running totals, running counts and moving averages

Although I'm working with SQL Server 2014, you can use OVER with aggregate functions all
the way back to SQL Server 2005. However, until SQL Server 2012, you couldn’t include an
ORDER clause with OVER and an aggregate function; OVER with aggregate functions was
restricted to PARTITION.

The ability to include ORDER BY with OVER and aggregate functions lets you compute
running totals, running counts and what are called moving averages. When ORDER BY is
included, the specified aggregate is computed for all records in the group up to and
including the current record. Listing 27 (included in the materials for this session as
RunningSalesByCustomer.SQL) demonstrates; it computes daily, monthly and yearly sales
by customer and includes running totals for the monthly and yearly sales. Partial results
are shown in Figure 19; look at the rows for customer 11019 to see the monthly running
total change for a customer.

Listing 27. You can add ORDER BY to an OVER clause using an aggregate function to get a running total or
moving average.

SELECT DISTINCT CustomerID, OrderDate,
SUM(SubTotal) OVER
(PARTITION BY CustomerID, YEAR(OrderDate)) AS Yearly,
SUM(SubTotal) OVER
(PARTITION BY CustomerID, YEAR(OrderDate), MONTH(OrderDate)) AS Monthly,
SUM(SubTotal) OVER
(PARTITION BY CustomerID, OrderDate) AS Daily,
SUM(SubTotal) OVER
(PARTITION BY CustomerID, YEAR(OrderDate) ORDER BY OrderDate)
AS YearlyRunning,
SUM(SubTotal) OVER
(PARTITION BY CustomerID, YEAR(OrderDate), MONTH(OrderDate)
ORDER BY OrderDate) AS MonthlyRunning

Copyright 2015, Tamar E. Granor ~ Page 27 of 55

Going OVER and Above with SQL

FROM Sales.SalesOrderHeader SOH
ORDER BY CustomerID, OrderDate;

CustomerlD OrderDate Yearly Monthly Daily YearlyRunning MonthlyRunning

2011-06-14 00:00:00.000 3374.89 337499 337499 337499 3374.99
2013-06-03 00:00:00.000 2316.87 2316.97 2316.97 2316.97 2316.97
2014-03-16 00:00:00.000 74235 74235 74235 74235 742.35
2011-06-19 00:00:00.000 339989 3399.99 3399.99 339999 3399.99
2013-06-18 00:00:00.000 2341.97 2341.97 2341.97 2341.97 2341.97
2014-03-26 00:00:00.000 79132 791.32 78132 791.32 791.32
2013-07-15 00:00:00.000 34247 3797 37.97 37.97 37.97
2013-08-04 00:00:00.000 34247 10196 53.99 91.96 53.99
2013-08-13 00:00:00.000 34247 10196 4797 139.93 101.96
2013-09-28 00:00:00.000 34247 8199 5.99 148.92 8.99
2013-10-08 00:00:00.000 34247 15626 7.28 156.20 7.28
2013-10-25 00:00:00.000 34247 15626 14898 305.18 156.26
2013-12-23 00:00:00.000 34247 3729 37.29 34247 37.29
2014-01-22 00:00:00.000 54023 229 2.29 2.29 2.29
2014-02-08 00:00:00.000 54023 4877 24.99 27.28 24.99

Figure 19. Include ORDER BY when using OVER with SUM() to get a running total.

Running totals are probably the easiest of this type of calculation to understand, but you
can do the same thing with most of the aggregate functions. When you use ORDER BY with
COUNT, you get a running count of records. The query in Listing 28 (included in the
session materials as RunningOrderCount.SQL) shows the total number of orders placed in a
year and the running total through the year; Figure 20 shows partial results. As with SUM,
when you use only PARTITION, you get the count for the whole partition. When you add
ORDER BY, you get a running count that changes on each value of the ordering expression
(OrderDate, in the example).

Listing 28. Use COUNT with ORDER BY to get a running count.

SELECT DISTINCT OrderDate, YEAR(OrderDate) AS OrderYear,
COUNT (SalesOrderNumber) OVER (PARTITION BY YEAR(OrderDate)) AS OrdersThisYear,
COUNT (SalesOrderNumber) OVER (PARTITION BY YEAR(OrderDate) ORDER BY OrderDate)
AS RunningOrdersThisYear
FROM [Sales].[SalesOrderHeader]
ORDER BY OrderDate

Copyright 2015, Tamar E. Granor =~ Page 28 of 55

Going OVER and Above with SQL

OrderDate OrderYear OrdersThisYear RunningOrdersThisYear
52011—0531 00:00:00.000 2011 1607 43
2011-06-01 00:00:00.000 2011 1607 47
2011-06-02 00:00:00.000 2011 1607 52
2011-06-03 00:00:00.000 2011 1607 54
2011-06-04 00:00:00.000 2011 1607 59
2011-06-05 00:00:00.000 2011 1607 63
2011-06-06 00:00:00.000 2011 1607 66
2011-06-07 00:00:00.000 2011 1607 69
2011-06-08 00:00:00.000 2011 1607 75
2011-06-09 00:00:00.000 2011 1607 78
2011-06-10 00:00:00.000 2011 1607 a2
2011-06-11 00:00:00.000 2011 1607 86
2011-06-12 00:00:00.000 2011 1607 a8
2011-06-13 00:00:00.000 2011 1607 95
2011-06-14 00:00:00.000 2011 1607 99

Figure 20. Using COUNT with OVER lets you compute counts and running counts by partition.

When you apply ORDER BY to AVG, you get a moving average, that is, the average of all the
records in the partition up to this point. The last record in the group will show the average
for the whole group. (This type of moving average is called a cumulative moving average.)
Listing 29 (included in the materials for this session as SalesWithMovingAverage.SQL)
demonstrates by computing the moving average of sales for a customer within a year.
Figure 21 shows partial results.

Listing 29. Using AVERAGE with OVER and an ORDER BY clause gives moving averages, the average of the
records in the group up to and including the current record.

SELECT CustomerID, OrderDate,
SUM(Subtotal) OVER
(PARTITION BY CustomerID, YEAR(OrderDate)) AS Yearly,
SUM(Subtotal) OVER
(PARTITION BY CustomerID, YEAR(OrderDate), MONTH(OrderDate)) AS Monthly,
AVG(Subtotal) OVER
(PARTITION BY CustomerID, YEAR(OrderDate) ORDER BY OrderDate) AS RunningAvg
FROM Sales.SalesOrderHeader
ORDER BY CustomerID, OrderDate;

Copyright 2015, Tamar E. Granor ~ Page 29 of 55

Going OVER and Above with SQL

CustomerlD OrderDate Yearly Monthly MovingAvg
| 2011-06-21 00:00:00.000 3399.99 3399.99 3399.99
2013-06-20 00:00:00.000 4849.00 2341.97 2341.97

11000 2013-10-03 00:00:00.000 4849.00 2507.03 242450
11001 2011-06-17 00:00:00.000 337499 337499 337499
11001 2013-06-158 00:00:00.000 2419.93 241993 2419.93
11001 2014-05-12 00:00:00.000 588.896 588596 535.96
11002 2011-06-09 00:00:00.000 3399.99 3399.99 33899.99
11002 2013-06-02 00:00:00.000 4714.05 229499 223493
11002 2013-07-26 00:00:00.000 4714.05 2419.06 2357.025
11003 2011-05-31 00:00:00.000 3399.99 3399.99 3399.99
11003 2013-06-07 00:00:00.000 473930 2318.96 2318.96
11003 2013-10-10 00:00:00.000 473930 242034 2369.65
11004 2011-06-25 00:00:00.000 3399.99 339999 33899.99
11004 2013-06-24 00:00:00.000 4796.02 2376.96 2376.96
11004 2013-10-01 00:00:00.000 4796.02 2419.06 23395.01

Figure 21. The last column here shows the moving average of sales for a customer within a year. Look at the
last record for each customer for the year to see the overall average for the year.

Similarly, when you use ORDER BY with MIN and MAX, you get the minimum or maximum
value in the group to this point. The query in Listing 30 shows the minimum and maximum
quantity in a single order to date for each product. Figure 22 shows partial results. The
query is included in the materials for this session as
SalesByYearMonthDayWithMinMax.SQL.

Listing 30. Applying OVER with ORDER BY to MIN() and MAX() lets you compute the minimum and
maximum so far.

SELECT DISTINCT OrderDate, ProductID,
SUM(SOD.OrderQty) OVER
(PARTITION BY SOD.ProductID, YEAR(OrderDate)) AS Yearly,
SUM(SOD.OrderQty) OVER
(PARTITION BY SOD.ProductID, YEAR(OrderDate), MONTH(OrderDate)) AS Monthly,
SUM(SOD.OrderQty) OVER
(PARTITION BY SOD.ProductID, OrderDate) AS Daily,
MIN(OrderQty) OVER (PARTITION BY ProductID ORDER BY OrderDate) as MinOrder,
MAX(OrderQty) OVER (PARTITION BY ProductID ORDER BY OrderDate) as MaxOrder
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON SOH.SalesOrderID = SOD.SalesOrderID
ORDER BY ProductID, OrderDate;

Copyright 2015, Tamar E. Granor ~ Page 30 of 55

Going OVER and Above with SQL

OrderDate ProductlD Yearly Monthly Daily MinOrder MaxOrder
52011—0531 00-00-00.000 | 707 331 24 24 1 4
2011-07-01 00:00:00.000 707 331 58 58 1 5
2011-08-01 00:00:00.000 707 331 96 55 1 5
2011-08-31 00:00:00.000 707 331 96 41 1 9
2011-10-01 00:00:00.000 707 331 141 77 1 10
2011-10-31 00:00:00.000 707 331 141 64 1 10
2011-12-01 00:00:00.000 707 331 12 12 1 10
2012-01-01 00:00:00.000 707 1278 61 31 1 10
2012-01-29 00:00:00.000 707 1278 61 30 1 10
2012-02-29 00:00:00.000 707 1278 27 27 1 10
2012-03-30 00:00:00.000 707 1278 93 93 1 10
2012-04-30 00:00:00.000 707 1278 52 52 1 10
2012-05-30 00:00:00.000 707 1278 162 1682 1 10
2012-06-30 00:00:00.000 707 1278 214 214 1 14
2012-07-31 00:00:00.000 707 1278 197 1897 1 24

Figure 22. The last two columns show running minimums and maximums for the quantity of a product in an
individual order.

Aggregating subsets within partitions

SQL Server 2012 also introduced another way of narrowing down which records are
aggregated. The ROWS and RANGE clauses let you specify that a calculation is applied only
to some records within a partition. Let’s look at an example.

Suppose you want to compute yearly orders for each product as well as a two-year moving
total. That is, each record in the result should show you sales for a product in a given year,
plus the sales for that product across the year you're looking at and the prior year. Your
initial reaction may be that you’d need a loop of some sort or a self-join to compute the
two-year (or three-year or five-year totals) after getting yearly totals, but OVER with the
ROWS clause makes this fairly easy. Listing 31 (SalesByYearWithTwoYearTotal.SQL in the
materials for this session) shows the query; Figure 23 shows partial results. The query
uses a CTE to compute the number of items sold each year for each product. Then, the
ROWS clause in the fourth field in the main query indicates that the field TwoYear should
be computed as the sum of NumSold for the current record and the preceding record
within the partition. Note that for the first row of each product, Yearly and TwoYear are the
same.

Listing 31. The ROWS clause lets you apply a function to a subset of a partition.

WITH csrYearlySales (OrderYear, ProductID, NumSold)
AS
(SELECT YEAR(OrderDate) AS OrderYear, ProductID, SUM(OrderQty) AS NumSold
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON SOH.SalesOrderID = SOD.SalesOrderID
GROUP BY YEAR(OrderDate), ProductID)

SELECT OrderYear, ProductID, NumSold AS Yearly,

Copyright 2015, Tamar E. Granor ~ Page 31 of 55

Going OVER and Above with SQL

SUM(NumSold) OVER (
PARTITION BY ProductID ORDER BY OrderYear
ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS TwoYear
FROM csrYearlySales
ORDER BY ProductID, OrderYear;

OrderYear ProductlD Yearhy TwoYear

20M 707 331 331
2012 707 1278 1609
2013 707 2940 4218
2014 707 1717 4657
20M 708 341 341
2012 708 1387 1728
2013 708 3088 4475
2014 708 1716 4504
20M 709 608 6058
2012 709 499 1107
20M 710 66 66
2012 710 24 a0
20M 71 380 360
2012 71 1519 1879

Figure 23. The TwoYear column here is computed using the ROWS clause.

As the example demonstrates, the ROWS clause lets you specify a number of rows near the
current row. In addition to the PRECEDING and CURRENT ROW items shown, you can also
specify FOLLOWING. For example, to have three-year totals including the year before and
the year after the current year, you'd specify ROW BETWEEN 1 PRECEDING and 1
FOLLOWING.

The documentation refers to the group of rows as a window frame or just frame. You can
specify UNBOUNDED PRECEDING as the start point to indicate that the frame begins with
the first row of the partition, or UNBOUNDED FOLLOWING as the end point to say that the
frame ends with the last row of the partition. Also, note that you can specify a frame where
all the rows are before the current row or all the rows are after the current row. That is,
either PRECEDING or FOLLOWING can be used for either of the start and end points of the
window. For example, in the product orders query, you might specify ROW BETWEEN 1
FOLLOWING and 2 FOLLOWING to compute a total for the next two years, not including the
current year. It’s easy to see why someone might want to use ROW BETWEEN 3
PRECEDING and 1 PRECEDING to compute, say, the average sales of a product over the last
three years (or months) for comparison to the sales for the current year (or month).

It’s important to realize that ROWS is unaware of the data in other fields of the specified
rows. It simply uses rows within the partition in the way you specify. For example, you
might think that you could compute the number of each product sold by date and include
the total sales for the week with that date in the middle with the query in Listing 32
(included in the materials for this session as ProductSalesWithWeekly-WRONG.SQL),
specifying 3 rows before and 3 rows after the current row. However, as the partial results

Copyright 2015, Tamar E. Granor ~ Page 32 of 55

Going OVER and Above with SQL

in Figure 24 show, the WeekSales column is wrong; it doesn’t notice that some dates are
missing because the product wasn'’t sold every day.

Listing 32. This attempt to calculate daily and weekly sales by product is flawed. ROWS simply counts
records forward and backward from the current record without paying any attention to their contents.

WITH csrSalesByProduct (ProductID, OrderDate, NumSold)
AS
(SELECT ProductID, OrderDate, SUM(OrderQty)
FROM [Sales].[SalesOrderHeader] SOH
JOIN [Sales].[SalesOrderDetail] SOD
ON SOH.SalesOrderID = SOD.SalesOrderDetaillID
GROUP BY ProductID, OrderDate)

SELECT OrderDate, ProductID, NumSold AS TodaysSales,
SUM(NumSold) OVER (
PARTITION BY ProductID ORDER BY ORDERDATE
ROWS BETWEEN 3 PRECEDING AND 3 FOLLOWING) AS WeekSales
FROM csrSalesByProduct
ORDER BY ProductID, OrderDate;

OrderDate ProductlD TodaysSales WeekSales
2011-05-31 00:00:00.000 | 707 6

2011-06-05 00:00:00.000 707
2011-06-06 00:00:00.000 707
2011-06-08 00:00:00.000 707
2011-06-09 00:00:00.000 707
2011-06-13 00:00:00.000 707
2011-06-16 00:00:00.000 707
2011-06-20 00:00:00.000 707
2011-06-29 00:00:00.000 707
2011-06-30 00:00:00.000 707
2011-07-01 00:00:00.000 707
2011-07-06 00:00:00.000 707
2011-07-08 00:00:00.000 707
2011-07-21 00:00:00.000 707
2011-07-22 00:00:00.000 707

—_ et e et B e e el ek e ed ek ek G
= 08 00 0O 09 00 00 00 s =] =] O 03 =

Figure 24. [t's easy to misuse ROWS by assuming that it takes data values into consideration. Here, the
WeekSales column is wrong, containing the units of the product sold in seven consecutive records, whether
or not those records represent consecutive days.

On the other hand, the RANGE keyword lets you specify rows based on value rather than
position. You can’t specify a number at either end with RANGE, though. You can start with
CURRENT ROW or UNBOUNDED PRECEDING and end with CURRENT ROW or
UNBOUNDED FOLLOWING.

You can also specify RANGE CURRENT ROW, which says to apply the function to all records
in the partition that have the same ORDER BY value as the current record. This offers a way
to compute an aggregate while still looking at individual records, as in Listing 33, where
we list each order, but include the daily sales total for the salesperson. Partial results are

Copyright 2015, Tamar E. Granor =~ Page 33 of 55

Going OVER and Above with SQL

shown in Figure 25. The query is included in the materials for this session as
SalesWithDailyTotal.SQL.

Listing 33. This query uses RANGE CURRENT ROW to compute the daily total for each order’s salesperson.

SELECT Orderdate, SalesPersonID, SubTotal,
SUM(SubTotal) OVER
(PARTITION BY SalesPersonID ORDER BY OrderDate
RANGE CURRENT ROW) AS SPDayTotal
FROM Sales.SalesOrderHeader SOH
WHERE SalesPersonID IS NOT NULL
ORDER BY SalesPersonID, OrderDate;

Orderdate SalesPerso... SubTotal SPDayTotal
2011-10-01 00:00:00.000 274 4194 589 6341.551
2011-10-01 00:00:00.000 274 2146.962 6341.551
2012-01-01 00:00:00.000 274 61206.4782 61206.4782
2012-01-29 00:00:00.000 274 6101.382 18307.746
2012-01-29 00:00:00.000 274 12206.364 18307.746
2012-02-29 00:00:00.000 274 33406.7043 33406.7043
2012-04-30 00:00:00.000 274 40708.4413 446706854
2012-04-30 00:00:00.000 274 3962.2441 44870.6854
2012-05-30 00:00:00.000 274 29277262 35757202
2012-05-30 00:00:00.000 274 647.994 3575.7202
2012-06-30 00:00:00.000 274 24589178 55616.5989
2012-06-30 00:00:00.000 274 4254 45 55616.5989
2012-06-30 00:00:00.000 274 48693.9751 55616.5989
2012-06-30 00:00:00.000 274 209.256 55616.5989
2012-07-31 00:00:00.000 274 53.994 523.788

Figure 25. The last column here shows the daily total for the salesperson, using RANGE CURRENT ROW.

RANGE doesn’t let you narrow down to a group of specific values, so you can’t ask for a
function to be applied to, say, all records with the same value as this row and the one
immediately following, or with the same value as this row and the next possible value. To
do calculations like that, you have to figure out clever ways to partition and order your
data.

You can, though, ask for the function to apply to records from this row’s value to the end,
giving you a “reverse running total.” The query in Listing 34 (included in the materials for
this session as SalesWithReverseRunningTotalByDay.SQL) computes such a reverse
running total of sales for the salesperson. Figure 26 shows partial results. Note that it’s still
a daily computation because RANGE uses the value of the ORDER BY expression to choose
records; for example, the third and fourth rows shown have the same value because they’re
for the same day.

Listing 34. The RANGE specified for the last column produces a reverse running total, where the first row for
each salesperson contains the total for that salesperson, and each subsequent row shows the total only from
that date to the end.

SELECT Orderdate, SalesPersonID, SubTotal,
SUM(SubTotal) OVER
(PARTITION BY SalesPersonID ORDER BY OrderDate
RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS ReverseRunningTotal

Copyright 2015, Tamar E. Granor ~ Page 34 of 55

Going OVER and Above with SQL

FROM Sales.SalesOrderHeader SOH
WHERE SalesPersonID IS NOT NULL
ORDER BY SalesPersonID, OrderDate;

OrderDate SalesPersonlD SubTotal ReverseRunningTotal
52011—0?—01 00:00:00.000 § 274 20544 7015 1092123.8561
2011-08-01 00:00:00.000 274 2039.994 1071579.1546
2011-10-01 00:00:00.000 274 4194 589 1069539.1606
2011-10-01 00:00:00.000 274 2146.962 1069539.1606
2012-01-01 00:00:00.000 274 612064732 1063197.6096
2012-01-29 00:00:00.000 274 6101.382 1001991.1314
2012-01-29 00:00:00.000 274 12206.364 1001991.1314
2012-02-29 00:00:00.000 274 33406.7043 983633.3354
2012-04-30 00:00:00.000 274 39622441 950276.6811
2012-04-30 00:00:00.000 274 407084413 95027665811
2012-05-30 00:00:00.000 274 2927 7262 9056059957
2012-05-30 00:00:00.000 274 647 994 905605.9957
2012-06-30 00:00:00.000 274 4254 45 902030.2755
2012-06-30 00:00:00.000 274 45693.9751 9020302755
2012-06-30 00:00:00.000 274 209.256 902030.2755

Figure 26. The reverse running total here declines each day for the salesperson.

To compute a reverse running total that declines with each record rather than each day,
change RANGE to ROWS, as in Listing 35 (included in the materials for this session as
SalesWithReverseRunningTotal.SQL). Partial results are shown in Figure 27.

Listing 35. Using ROWS rather than RANGE results in a complete reverse running total that declines with
each record.

SELECT Orderdate, SalesPersonID, SubTotal,
SUM(SubTotal) OVER
(PARTITION BY SalesPersonID ORDER BY OrderDate
ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS ReverseRunningTotal
FROM Sales.SalesOrderHeader SOH
WHERE SalesPersonID IS NOT NULL
ORDER BY SalesPersonID, OrderDate;

Copyright 2015, Tamar E. Granor ~ Page 35 of 55

Going OVER and Above with SQL

OrderDate SalesPersonlD SubTotal ReverseRunningTotal
2011-07-01 00:00:00.000 274 20544 7015 1092123.8561
2011-08-01 00:00:00.000 274 2039.994 1071579.1546
2011-10-01 00:00:00.000 274 4194 589 10673921986
2011-10-01 00:00:00.000 274 2146.962 1069539.1606
2012-01-01 00:00:00.000 274 61206.4732 1063197.6096
2012-01-29 00:00:00.000 274 6101.382 989784 7674
2012-01-29 00:00:00.000 274 12206.364 1001991.1314
2012-02-29 00:00:00.000 274 33406.7043 983683.3854
2012-04-30 00:00:00.000 274 39622441 909565 2398
2012-04-30 00:00:00.000 274 40708 4413 9502766811
2012-05-30 00:00:00.000 274 2927 7262 904955.0017
2012-05-30 00:00:00.000 274 647994 905605.9957
2012-06-30 00:00:00.000 274 4254 45 850665.1266
2012-06-30 00:00:00.000 274 48693.9751 8993621017
2012-06-30 00:00:00.000 274 209.256 899571 3577

Figure 27. Use ROWS BETWEEN CURRENT ROW and UNBOUNDED FOLLOWING to compute reverse running
totals.

While these examples of ROWS and RANGE use the SUM function, they actually can be
applied to any of the functions you can use with OVER, so you can find, for example, the
largest sale or the average sale for each salesperson on a daily basis. (You might then use
that to compute the ratio of a given sale to the largest or average sale for that day.)

[should also note that although many of these examples order by date, you can order by
pretty much anything. My examples use ORDER BY OrderDate or one of its components
(month, year) simply because it’s easy to think of business examples where we want to
calculate things based on the date or the month or the year.

Analytical functions

The final group of functions that can be used with OVER are analytical functions; they were
added in SQL Server 2012. They can be broken into two broad subsets. The first gives you
access to values from other records in the group: FIRST_VALUE and LAST_VALUE, as their
names suggest, let you grab values from the first or last record in a partition; LEAD and LAG
provide access to records following or preceding the current record.

The second subset, containing CUME_DIST, PERCENTILE_CONT, PERCENTILE_DISC, and
PERCENT_RANK, looks at percentiles and distributions.

Comparing across records

The functions that give you access to different records in the partition allow you to put data
from multiple records into a single result record without doing a self-join. Let’s start with
LEAD and LAG, which are the easiest to understand.

Copyright 2015, Tamar E. Granor =~ Page 36 of 55

Going OVER and Above with SQL

Suppose you’d like to see the number of units sold for each product by year, along with the
prior year’s sales and the next year’s sales. That is, you want each record to show three
years’ worth of sales for a single product.

In VFP, you need to use three copies of the table (or cursor) that contains the totals to do
this, as in Listing 36 (included in the materials for this session as
ThreeYearProductSales.PRG). The first query computes the yearly totals for each product,
and puts them into a cursor called csrYearlySales. Then, the second query joins three
instances of csrYearlySales, matching records on ProductID and then looking one year back
and one year forward, respectively, in the second part of each join condition. As the partial
results in Figure 28 show, you get the null value for the previous year in the first record for
each product and for the following year in the last record for each product. (Since the
Northwind database has data for only three years, you get exactly three rows per product
here, but if there were data covering a longer span of years, there’d be more rows for each
product.)

Listing 36. To include data from multiple records in the same table into a single record in the result in VFP,
you have to use a self-join, including the source table once for each record you want to access.

SELECT YEAR(OrderDate) AS OrderYear, ProductID, SUM(Quantity) AS NumSold ;
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID = OrderDetails.OrderID ;
GROUP BY 1, 2 ;
ORDER BY 2, 1 ;
INTO CURSOR csrYearlySales

SELECT Curr.ProductID, Curr.OrderYear, ;
Prev.NumSold AS PrevYear, Curr.NumSold AS CurrYear, Foll.NumSold AS FollYear ;
FROM csrYearlySales Curr ;
LEFT JOIN csrYearlySales Prev ;
ON Curr.ProductID = Prev.ProductID ;
AND Curr.OrderYear = Prev.OrderYear + 1;
LEFT JOIN csrYearlySales Foll ;
ON Curr.ProductID = Foll.ProductID ;
AND Curr.OrderYear = Foll.OrderYear - 1;
ORDER BY 1, 2 ;
INTO CURSOR csrThreeYears

Copyright 2015, Tamar E. Granor =~ Page 37 of 55

Going OVER and Above with SQL

Productid Orderyear FPrevyear Curryear Follyear
1996 .NULL. 125 304

1 1557 125 304 3599
1 1558 304 399 .NULL.
2 1556 .NULL. 226 435
2 1987 226 435 396
2 1998 435 396 .NULL.
3 1956 .NULL. 30 150
3 1557 30 150 108
3 1558 150 108 .NULL.
4 1556 .NULL. 107 264
4 1557 107 264 82
4 1998 264 82 .NULL.
5 1956 .NULL. 129 19
5 15897 129 19 150
5 1558 158 150 .NULL.
& 1556 .NULL. 36 100
& 1557 36 100 165
& 1558 100 165 .NULL.

Figure 28. In VFP, to get totals for three different years into the same row of the result, you join three
instances of the table that contains the data.

You can solve the problem the same way in T-SQL (though you’d probably use a CTE rather
than a separate query to compute the yearly totals). But the LAG and LEAD functions
provide a better, more flexible solution.

In its simplest form, LEAD lets you include data from the next record in the partition in the
results for the current record. Similarly, the simplest form of LAG pulls data from the
preceding record into the result for the current record. For example, the query in Listing
37 (SalesByYearWithPrevAndFoll.SQL in the materials for this session) shows the total
number sold for each product by year, and includes the number sold for the preceding year
and the following year. The CTE computes the total for each product for each year, and then
the main query pulls the total for the preceding record (LAG), the current record, and the
following record (LEAD). LAG and LEAD are both partitioned by ProductID, so we look only
at records for the same product. Figure 29 shows partial results; note that, just as in the
VFP version, the PrevYear column is null for the first record for each product, and the
FollYear column is null for the last record for each product.

Listing 37. LEAD and LAG let you pull data from other records in the partition into the results for a record.

WITH csrYearlySales (OrderYear, ProductID, NumSold)
AS
(SELECT YEAR(OrderDate) AS OrderYear, ProductID, SUM(OrderQty) AS NumSold
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON SOH.SalesOrderID = SOD.SalesOrderID
GROUP BY YEAR(OrderDate), ProductID)

SELECT OrderYear, ProductID,
LAG(NumSold) OVER (PARTITION BY ProductID ORDER BY OrderYear) AS PrevYear,
NumSold AS CurrYear,
LEAD(NumSold) OVER (PARTITION BY ProductID ORDER BY OrderYear) AS FollYear

Copyright 2015, Tamar E. Granor =~ Page 38 of 55

Going OVER and Above with SQL

FROM csrYearlySales
ORDER BY ProductID, OrderYear;

| OrderYear ProductlD PrevYear CurrYear FollYear

- 707 NULL 331 1278

707 331 1278 2940
707 1278 2940 1717
707 2940 1717 NULL
708 NULL 341 1387
708 341 1387 3088
708 1387 3088 1716
708 3088 1716 NULL
709 NULL 605 499
709 608 499 NULL
710 NULL 66 24
710 66 24 NULL
711 NULL 360 1519
711 360 1519 3088

Figure 29. With LAG and LEAD, you can include data from other records in the same partition.

You can actually pass an expression to LAG and LEAD, not just a single field name, so you
can do a calculation based on data from a preceding or following record. In addition, the
two functions have two optional parameters. The second parameter, called Offset in the
documentation, lets you specify which record to use. It’s an offset from the current position,
and defaults to 1. So when you omit the parameter, you get the record immediately
preceding or immediately following the current record. But you can jump two back or six
forward, or whatever. The query in Listing 38 (included in the materials for this session as
FiveYearProductSales.SQL) shows five years’ worth of totals for each product in each
record, putting the year the record represents in the middle. As the partial result in Figure
30 shows, we don’t actually have five years’ sales data, so every record contains some nulls.

Listing 38. You can specify records more than one record away from the current record using the optional
second parameter to LAG and LEAD.

WITH csrYearlySales (OrderYear, ProductID, NumSold)
AS
(SELECT YEAR(OrderDate) AS OrderYear, ProductID, SUM(OrderQty) AS NumSold
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON SOH.SalesOrderID = SOD.SalesOrderID
GROUP BY YEAR(OrderDate), ProductID)

SELECT OrderYear, ProductID,

LAG(NumSold, 2) OVER (PARTITION BY ProductID ORDER BY OrderYear) AS Yearl,
LAG(NumSold) OVER (PARTITION BY ProductID ORDER BY OrderYear) AS Year2,
NumSold AS Year3,
LEAD(NumSold) OVER (PARTITION BY ProductID ORDER BY OrderYear) AS Year4,
LEAD(NumSold,2) OVER (PARTITION BY ProductID ORDER BY OrderYear) AS Year5

FROM csrYearlySales

ORDER BY ProductID, OrderYear;

Copyright 2015, Tamar E. Granor ~ Page 39 of 55

Going OVER and Above with SQL

OrderYear ProductD Yearl Year2 Year3 Yeard Yeard

2011 707 NULL NULL 331 1276 2840
2012 707 NULL 331 1276 2940 1717
2013 707 331 1278 2940 1717 NULL
2014 707 1278 2940 1717 NULL NULL
2011 708 NULL NULL 341 1387 3088
2012 708 NULL 341 1387 3088 1716
2013 708 341 1387 3088 1716 NULL
2014 705 1387 3088 1716 NULL NULL
2011 709 MNULL NULL 608 499 NULL
2012 709 NULL 808 499 NULL NULL
201 710 NULL NULL 68 24 NULL
2012 710 NULL 66 24 NULL NULL
2011 711 NULL NULL 360 1519 3088
2012 711 NULL 380

Joss 1776

Figure 30. Using the Offset parameter of LEAD and LAG, you can reach forward and back an arbitrary
number of records.

While you can get analogous results in VFP, you’'d have to use two more self-joins to
csrYearlySales with the appropriate join conditions.

The third parameter to LAG and LEAD lets you specify a default value to use when the
computed value is null. For example, if you'd prefer to see zeroes rather than nulls where
there’s no data, you can specify a third parameter of 0 for each LAG and LEAD in Listing 38.

It's important to keep in mind that, like ROWS, LAG and LEAD are about position, not range.
LAG returns the value of the expression for the preceding record in the partition, even if
that record doesn’t represent the immediately preceding value of the ordering expression.
In the examples above, if some product hadn’t been sold during a particular year (perhaps
the materials to produce it weren’t available), the PrevYear and FollYear columns wouldn’t
necessarily represent the immediately preceding and following year. That’s easier to see if
you consider showing sales for three days at a time, as in Listing 39 (included in the
materials for this session as SalesByDayWithPrevAndFoll-WRONG.SQL), which is the same
query as in Listing 37, except that it computes daily sales. Partial results are shown in
Figure 31, where it’s clear that PrevDate and FollDate show sales for the first previous day
and the next day on which the product was sold, not the previous day and next day.

Listing 39. When looking at daily sales (rather than yearly), the real meaning of LAG and LEAD becomes
more apparent.

WITH csrDailySales (OrderDate, ProductID, NumSold)
AS
(SELECT OrderDate , ProductID, SUM(OrderQty) AS NumSold
from Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON soh.SalesOrderID = sod.SalesOrderID
group by OrderDate, ProductID)

SELECT OrderDate, ProductID,
LAG(NumSold) OVER (PARTITION BY ProductID ORDER BY OrderDate) AS PrevDate,

Copyright 2015, Tamar E. Granor ~ Page 40 of 55

Going OVER and Above with SQL

NumSold AS CurrYear,
LEAD(NumSold) OVER (PARTITION BY ProductID ORDER BY OrderDate) AS FollDate
FROM csrDailySales
ORDER BY ProductID, OrderDate

OrderDate ProductlD PrevDate CurrDate FollDate
2011-05-31 00:00:00.000 707 NULL 24 58
2011-07-01 00:00:00.000 707 24 58 55
2011-08-01 00:00:00.000 707 58 55 41
2011-08-31 00:00:00.000 707 55 41 77
2011-10-01 00:00:00.000 707 41 77 64
2011-10-31 00:00:00.000 707 77 64 12
2011-12-01 00:00:00.000 707 64 12 31
2012-01-01 00:00:00.000 707 12 31 30
2012-01-29 00:00:00.000 707 31 30 27
2012-02-29 00:00:00.000 707 30 27 93
2012-03-30 00:00:00.000 707 27 93 52
2012-04-30 00:00:00.000 707 93 52 162
2012-05-30 00:00:00.000 707 52 162 214

Figure 31. These results make it clear that LAG and LEAD operate based on position, not data.

Looking at first and last records

The second pair of functions that give you access to other records in the same partition is
FIRST_VALUE and LAST_VALUE. Though they sound like they’d be exact analogues of each
other, they’re not. FIRST_VALUE is simpler, so we'll look at it first. Like LAG and LEAD,
these functions let you look at multiple records simultaneously without a self-join, but
writing such code without these functions is a lot more complex.

FIRST_VALUE accepts an expression and returns the value of that expression for the first
record in the partition, according to the specified order. For example, the query in Listing
40 (PayHistoryWithOrig.SQL in the materials for this session) shows each employee’s pay
history in chronological order. Each record shows one pay rate and the date it took effect,
as well as the original pay rate for this employee. We partition the data on
BusinessEntitylD, which is the primary key for Person. In each partition, records are
ordered by the date of the pay change, so the original pay rate appears first. Look at the last
three rows in Figure 32 to see an employee with multiple records.

Listing 40. FIRST_VALUE lets you include data from the first record in the partition with each record in the
result.

SELECT FirstName, LastName, Rate, RateChangeDate,
FIRST_VALUE(Rate) OVER
(PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate) AS OrigRate
FROM Person.Person
JOIN [HumanResources].[EmployeePayHistory] EPH
ON Person.BusinessEntityID = EPH.BusinessEntityID
ORDER BY LastName, FirstName, RateChangeDate;

Copyright 2015, Tamar E. Granor =~ Page 41 of 55

Going OVER and Above with SQL

FirstName LastName Rate RateChangeDate OrigRate
Karen Berge 10.25 2009-02-09 00:00:00.000 10.25
Andreas Berglund 10.5769 2009-02-02 00:00:00.000 10.5769
Matthiss Berndt 9.50 2009-01-20 00:00:00.000 950

Jo Berry 9.25 2010-03-07 00:00:00.000 925
Jimmy Bischoff 9.00 2009-02-26 00:00:00.000 9.00
Michael Blythe 23.0769 2011-05-31 00:00:00.000 23.0769
David Bradley 24.00 2007-12-20 00:00:00.000 24.00
David Bradley 28.75 2009-07-15 00:00:00.000 24.00
David Bradley 37.50 2012-04-30 00:00:00.000 24.00

Figure 32. Here, each employee pay rate record is shown along with the original pay rate for the employee.

While the example in Listing 40 doesn’t seem terribly useful, a small extension of the idea
does. The query in Listing 41 (PayHistoryWithPctInc.SQL in the materials for this session)
computes the percentage increase from the original pay rate and includes only those
records that represent changes in pay in the result. (The query also includes the date for
the original pay rate.) The CTE here is required in order to be able to use the computed
increase in the WHERE clause. Figure 33 shows partial results; for example, David Bradley
started in December, 2012 at $24 /hour. He got a raise of nearly 20% in July, 2009 and an
additional raise at the end of April, 2012, making his pay rate more than 56% higher than
when he started.

Listing 41. You can use the analytical functions as part of a larger expression. Here, the original rate found by
FIRST_VALUE divides the new rate to find the percent increase.

WITH csrPayHikes (FirstName, LastName, Rate, RateChangeDate, OrigRate, OrigDate, Inc)
AS
(SELECT FirstName, LastName, Rate, RateChangeDate,
FIRST_VALUE(Rate) OVER
(PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate),
FIRST_VALUE (RateChangeDate) OVER
(PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate),
CAST((100.00 * Rate/FIRST_VALUE(Rate) OVER
(PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate)-100)
AS DECIMAL(5,2))
FROM Person.Person
JOIN [HumanResources].[EmployeePayHistory] EPH
ON Person.BusinessEntityID = EPH.BusinessEntityID)

SELECT *
FROM csrPayHikes
WHERE Inc <> ©
ORDER BY LastName, FirstName, RateChangeDate;

Copyright 2015, Tamar E. Granor =~ Page 42 of 55

Going OVER and Above with SQL

FirstName LastName Rate RateChangeDate OrigRate OrigDate Inc
 Bradley 2875 2009-07-1500:00:00.000 24.00 2007-12-20 00:00:00.000 19.79
‘David Bradley 37.50 2012-04-30 00:00:00.000 24.00 2007-12-20 00:00:00.000 56.25

John Frum 7.00 2011-12-01 00:00:00.000 6.50 2009-03-03 00:00:00.000 7.69

John Frum 950 2013-07-14 00:00:00.000 6.50 2009-03-03 00:00:00.000 46.15

Marc Ingle 725 2011-12-01 00:00:00.000 6.50 2009-01-16 00:00:00.000 11.54

Marc Ingle 950 2013-07-14 00:00:00.000 6.50 2009-01-16 00:00:00.000 46.15

David Johnson 7.25 2011-12-01 00:00:00.000 6.50 2008-12-02 00:00:00.000 11.54

David Johnson 950 2013-07-14 00:00:00.000 6.50 2008-12-02 00:00:00.000 46.15

Russell King 725 2011-12-01 00:00:00.000 6.50 2009-02-21 00:00:00.000 11.54

Russell King 950 2013-07-14 00:00:00.000 6.50 2009-02-21 00:00:00.000 46.15

Reed Koch 725 2011-12-01 00:00:00.000 6.50 2009-02-02 00:00:00.000 11.54

Reed Koch 950 2013-07-14 00:00:00.000 6.50 2009-02-02 00:00:00.000 46.15

David Lawrence 7.25 2011-12-01 00:00:00.000 6.50 2009-02-14 00:00:00.000 11.54

David Lawrence 950 2013-07-14 00:00:00.000 6.50 2009-02-14 00:00:00.000 46.15

George Li 725 2011-12-01 00:00:00.000 6.50 2008-12-21 00:00:00.000 11.54

Figure 33. The Inc column uses FIRST_VALUE in a computation to figure out how much of a cumulative raise
each employee has received.

You’'d expect LAST_VALUE to behave the same way, except returning the last value in the
partition for the specified expression. However, by default, the function returns the
“running last value,” that is, the one you’re up to. For example, suppose we replace
FIRST_VALUE with LAST_VALUE in the query in Listing 40, so we have the query shown in
Listing 42 (included in the materials for this session as PayHistoryWithLast.SQL). We get
results like those shown in Figure 34. The computed value for CurrRate is the same as the
Rate column, because LAST_VALUE looks at the partition only up to the current record.

Listing 42. By default, LAST_VALUE returns the last value of the expression up to the row we’re on, not the
last value in the partition.

SELECT FirstName, LastName, Rate, RateChangeDate,
LAST_VALUE(Rate) OVER
(PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate) AS CurrRate
FROM Person.Person
JOIN [HumanResources].[EmployeePayHistory] EPH
ON Person.BusinessEntityID = EPH.BusinessEntityID
ORDER BY LastName, FirstName, RateChangeDate;

Copyright 2015, Tamar E. Granor =~ Page 43 of 55

Going OVER and Above with SQL

FirstName LastName Rate RateChangeDate CurrRate
Paula Barreto de .. 271394 2008-12-06 00:00:00.000 27.1394
Wanida Benshoof 134615 2011-01-07 00:00:00.000 134615
Karen Berg 274038 2009-02-16 00:00:00.000 274038
Karen Berge 10.25 2009-02-09 00:00:00.000 1025
Andreas Berglund 10.5769 2008-02-02 00:00:00.000 10.5769
Matthias Berndt 9.50 2009-01-20 00:00:00.000 9.50

Jo Berry 9.25 2010-03-07 00:00:00.000 9.25
Jimmy Bischoff 9.00 2009-02-26 00:00:00.000 9.00
Michael Blythe 23.0769 2011-05-31 00:00:00.000 23.0769
David Bradley 24.00 2007-12-20 00:00:00.000 24.00
David Bradley 2875 2009-07-15 00:00:00.000 2875
David Bradley 37.50 2012-04-30 00:00:00.000 3750

Figure 34. Because of the default behavior of LAST_VALUE, the CurrRate column here is always the same as
the Rate column.

The secret to getting the actual last value in the partition is to use the window frame
notation (described in “Aggregating subsets within partitions,” earlier in this paper). The
default frame is RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. To get
a value from the last record of the partition, we need RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING. The query in Listing 43 (included in the
materials for this session as PayHistoryWithOrigAndCurr.SQL) shows the pay rate
represented by the particular record, the original pay rate and the current pay rate. Figure
35 shows partial results; the last three records in the figure demonstrate the correct
results for an employee with multiple pay rates.

Listing 43. Use the RANGE clause with LAST_VALUE to find the last value across the entire partition.

SELECT FirstName, LastName, Rate, RateChangeDate,
FIRST_VALUE(Rate) OVER
(PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate) AS OrigRate,
LAST_VALUE (Rate) OVER
(PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS CurrRate
FROM Person.Person
JOIN [HumanResources].[EmployeePayHistory] EPH
ON Person.BusinessEntityID = EPH.BusinessEntityID
ORDER BY LastName, FirstName, RateChangeDate;

Copyright 2015, Tamar E. Granor ~ Page 44 of 55

Going OVER and Above with SQL

FirstName LastName Rate RateChangeDate OrigRate CurrRate
Mary Baker 13.45 2008-12-25 00:00:00.000 13.45 13.45
Angela Barbariol 11.00 2008-01-20 00:00:00.000 11.00 11.00
David Barber 134615 2009-01-12 00:00:00.000 13.4615 134615
Paula Barreto de ... 27.1394 2008-12-06 00:00:00.000 27.1384 27.1384
Wanida Benshoof 134615 2011-01-07 00:00:00.000 13.4615 134615
Karen Berg 27.4038 2008-02-16 00:00:00.000 27.4038 27.4038
Karen Berge 10.25 2008-02-09 00:00:00.000 10.25 10.25
Andreas Berglund 10,5769 2009-02-02 00:00:00.000 10.5769 10.5769
Matthias Berndt 8.50 2008-01-20 00:00:00.000 9.50 8.50

Jo Berry 89.25 2010-03-07 00:00:00.000 9.25 89.25
Jimmy Bischoff 9.00 2008-02-26 00:00:00.000 9.00 9.00
Michael Blythe 23.0769 2011-05-31 00:00:00.000 23.0769 23.0769
David Bradley 24.00 2007-12-20 00:00:00.000 24.00 37.50
David Bradley 2575 2008-07-15 00:00:00.000 24.00 37.50
David Bradley 37.50 2012-04-30 00:00:00.000 24.00 37.50

Figure 35. When LAST_VALUE is applied together with RANGE UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING, you get the value from the last record in the partition.

As with FIRST_VALUE, you can use LAST_VALUE as part of a larger expression, so you could
compute, say, the percentage increase from the pay rate in the current record to the
current pay rate returned by LAST_VALUE.

These two functions let you work around a limitation of the MIN and MAX aggregate
functions. The issue is that MIN and MAX give you the minimum or maximum value for the
specified expression, but they don’t give you a way to reach into other fields of the record
that provides the minimum or maximum.

For example, you might want to compute the number of units sold for each product in each
year and include information about the best and worst years for that product. If all you
want to know is the number sold in the best and worst years for each product, you can do
that with a simple GROUP BY, as in Listing 44 (MinMaxProductsSold.SQL in the materials
for this session).

Listing 44. If all you want is to find a minimum or maximum value, you don’t need FIRST_VALUE or
LAST_VALUE.

WITH csrYearlySales (OrderYear, ProductID, NumSold)
AS

(SELECT YEAR(OrderDate) AS OrderYear, ProductID, SUM(OrderQty) AS NumSold
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON SOH.SalesOrderID = SOD.SalesOrderID
GROUP BY YEAR(OrderDate), ProductID)

SELECT ProductID, MIN(NumSold) AS MinSold, MAX(NumSold) AS MaxSold
FROM csrYearlySales
GROUP BY ProductID
ORDER BY ProductID;

Copyright 2015, Tamar E. Granor ~ Page 45 of 55

Going OVER and Above with SQL

But suppose you want to know which year was best and which was worst. You can’t just
add OrderYear to the field list; that will give you an error. Specifying MIN(OrderYear)
doesn’t give you the year for the minimum sold; it gives you the first year in the group. But
with FIRST_VALUE and LAST_VALUE, you can get exactly what you want, as in Listing 45
(included in the materials for this session as SalesByYearWithWorstAndBest.SQL). Figure
36 shows partial results.

Listing 45. FIRST_VALUE and LAST_VALUE solve the problem that MIN and MAX can’t give you the values of
other fields in the record that produced the minimum or maximum.

WITH csrYearlySales (OrderYear, ProductID, NumSold)
AS

(SELECT YEAR(OrderDate) AS OrderYear, ProductID, SUM(OrderQty) AS NumSold
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON SOH.SalesOrderID = SOD.SalesOrderID
GROUP BY YEAR(OrderDate), ProductID)

SELECT ProductID, OrderYear, NumSold,
FIRST_VALUE (NumSold) OVER
(PARTITION BY ProductID ORDER BY NumSold) AS MinSold,
FIRST_VALUE(OrderYear) OVER
(PARTITION BY ProductID ORDER BY NumSold) AS MinYear,
LAST_VALUE (NumSold) OVER
(PARTITION BY ProductID ORDER BY NumSold
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS MaxSold,
LAST_VALUE(OrderYear) OVER
(PARTITION BY ProductID ORDER BY NumSold
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS MaxYear
FROM csrYearlySales
ORDER BY ProductID, OrderYear;

E*[DducilD OrderYear NumSold MinSold MinYear MaxSold MaxYear

70 | 2011 331 331 2011 2940 2013
707 " 2012 1278 331 2011 2940 2013
707 2013 2940 331 2011 2940 2013
707 2014 1717 331 2011 2940 2013
708 2011 341 341 2011 3088 2013
708 2012 1387 341 2011 3088 2013
708 2013 3088 341 2011 3088 2013
708 2014 1716 341 2011 3088 2013
709 2011 608 499 2012 608 2011
709 2012 499 499 2012 608 2011
710 2011 66 24 2012 66 2011
710 2012 24 24 2012 66 2011
711 2011 360 360 2011 3088 2013
711 2012 1519 360 2011 3088 2013
711 2013 3088 360 2011 3088 2013

Figure 36. These results show sales by product by year, along with the worst and best year for that product.

Copyright 2015, Tamar E. Granor =~ Page 46 of 55

Going OVER and Above with SQL

In addition, FIRST_VALUE and LAST_VALUE can answer questions more simply, that is,
with less code. Suppose you want to get a list of AdventureWorks employees, with their
current department, and their last previous department. Without these functions, you need
two CTEs to get the name of the previous department, so you can join it to the current data,
as in Listing 46 (EmployeeWithPriorDept-TwoCTE.SQL in the materials for this session).
The first CTE finds the latest date an employee’s assignment to another department ended.
The second CTE uses that date to find the appropriate record in
EmployeeDepartmentHistory and joins it to Department to get the name of the department.
Then, the main query joins that data with other employee data.

Listing 46. To find each employee’s previous department and join it to the current data, you can use a pair of
CTEs.

WITH LastXfer (BusinessEntityID, LastEndDate)

AS

(SELECT BusinessEntityID, MAX(EndDate)
FROM HumanResources.EmployeeDepartmentHistory EDH
WHERE EndDate IS NOT NULL
GROUP BY BusinessEntityID),

PriorDept (BusinessEntityID, DeptName)
AS
(SELECT EDH.BusinesskEntityID, Name
FROM HumanResources.EmployeeDepartmentHistory EDH
JOIN HumanResources.Department
ON EDH.DepartmentID = Department.DepartmentID
JOIN LastXfer
ON EDH.BusinessEntityID = LastXfer.BusinessEntityID
AND EDH.EndDate = LastXfer.LastEndDate

)

SELECT Person.BusinessEntityID, FirstName, LastName, Name AS DeptName,
PriorDept.DeptName AS PriorDeptName
FROM Person.Person

JOIN HumanResources.EmployeeDepartmentHistory EDH
ON Person.BusinessEntityID = EDH.BusinessEntityID
AND EDH.EndDate IS NULL

JOIN HumanResources.Department
ON EDH.DepartmentID = Department.DepartmentID

LEFT JOIN PriorDept
ON Person.BusinessEntityID = PriorDept.BusinessEntityID;

Using LAST_VALUE, we can use a single CTE, as in Listing 47 (included in the materials for
this session as EmployeeWithPriorDept-LastValue.SQL). The CTE uses LAST_VALUE to get
the name of the last department an employee left. The CTE requires DISTINCT because it
provides one record for each previous assignment for each employee; DISTINCT reduces
that to one record. Figure 37 shows partial results.

Listing 47. With LAST_VALUE, you can get the name of the employee’s last prior department with a single
CTE.

WITH PriorDept (BusinessEntityID, DeptName)

Copyright 2015, Tamar E. Granor =~ Page 47 of 55

Going OVER and Above with SQL

AS
(SELECT DISTINCT BusinessEntityID,
LAST_VALUE(Name) OVER
(PARTITION BY BusinessEntityID ORDER BY EndDate
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
FROM HumanResources.EmployeeDepartmentHistory EDH
JOIN HumanResources.Department
ON EDH.DepartmentID = Department.DepartmentID
WHERE EndDate IS NOT NULL)

SELECT Person.BusinessEntityID, FirstName, LastName, Name AS DeptName,
PriorDept.DeptName AS PriorDeptName
FROM Person.Person

JOIN HumanResources.EmployeeDepartmentHistory EDH
ON Person.BusinessEntityID = EDH.BusinessEntityID
AND EDH.EndDate IS NULL

JOIN HumanResources.Department
ON EDH.DepartmentID = Department.DepartmentID

LEFT JOIN PriorDept
ON Person.BusinessEntityID = PriorDept.BusinessEntityID;

BusinessEntitylD FirstName LastName DeptName PriorDeptName
1 . Ken Sénchez Executive NULL

2 Terr Duffy Engineering NULL

3 Roberto Tamburello Engineering NULL

4 Rob Walters Tool Design Engineering
5 Gail Erickson Engineering NULL

6 Jossef Goldberg Engineering NULL

7 Dylan Miller Research and Development NULL

8 Diane Margheim Research and Development NULL

9 Gigi Matthew Research and Development NULL

10 Michael Raheem Research and Development NULL

11 Owidiu Cracium Tool Design NULL

12 Thierry D'Hers Tool Design NULL

13 Janice Galvin Tool Design NULL

14 Michael Sullivan Engineering NULL

12 Sharon Salavaria Engineering NULL

Figure 37. LAST_VALUE makes it easier to find the name of an employee’s last previous department.

Showing distribution of records

The analytical function group also offers ways to rank the records relatively. The
CUME_DIST() and PERCENT_RANK() functions both assign each record a value between 0
and 1 representing its position in the partition based on the specified order for the
partition. The two functions differ in whether any record is assigned 0; that difference in
the first record of the partition leads to different results throughout.

The easiest way to understand the difference between these functions, and between these
two and the RANK function described earlier in this paper, is to look at the results. The
query in Listing 48 (RankAndDistribution.SQL in the materials for this session) computes

Copyright 2015, Tamar E. Granor =~ Page 48 of 55

Going OVER and Above with SQL

sales by salesperson by year, and then applies a series of analytics to the data. Partial
results are shown in Figure 38.

Listing 48. T-SQL offers several ways to show the distribution of data.

WITH csrAnnualSales (SalesPersonID, OrderYear, TotalSales)

AS

(SELECT SalesPersonID, YEAR(OrderDate), SUM(SubTotal) AS TotalSales
FROM [Sales].[SalesOrderHeader]
WHERE SalesPersonID IS NOT NULL
GROUP BY SalesPersonID, YEAR(OrderDate))

SELECT SalesPersonID, OrderYear, TotalSales,
CUME_DIST() OVER (PARTITION BY OrderYear ORDER BY TotalSales) AS CumeDist,
PERCENT_RANK() OVER (PARTITION BY OrderYear ORDER BY TotalSales) AS PctRank,
RANK() OVER (PARTITION BY OrderYear ORDER BY TotalSales) AS Rank,
COUNT(SalesPersonID) OVER
(PARTITION BY OrderYear ORDER BY TotalSales
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS GroupCount,
CAST(1.00 * RANK() OVER
(PARTITION BY OrderYear ORDER BY TotalSales) /
COUNT(SalesPersonID) OVER
(PARTITION BY OrderYear ORDER BY TotalSales
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
AS decimal(5,2)) AS ComputedDist
FROM csrAnnualSales;

SalesPersonlD OrderYear TotalSales CumeDist PctRank Rank GroupCount ComputedDist
2?4 2011 25926 2455 01 0 1 0 010
278 2011 500091.8202 0.2 0111111111111 2 10 0.20
283 2011 5999587 9444 0.3 0.222222222222222 3 10 0.30
280 2011 6454555862 04 0.333333333333333 4 10 0.40
275 2011 875823.8318 05 0.444444444444444 5 10 0.50
281 2011 967597 2899 06 0.555555555555556 6 10 0.60
276 2011 1149715.3253 0.7 0.666666666666667 7 10 0.70
282 2011 1175007 4753 08 Q7777777777777 78 a3 10 0.80
277 2011 13116272918 09 0.8885855588858889 9 10 0.90
279 2011 1521289.1881 1 1 10 10 1.00
287 2012 116029 652 0.0714285714285714 0 1 14 0.07
284 2012 441639.5961 0.142857142857143 0.0769230769230768 2 14 014
274 2012 453524 5233 0.214285714285714 0.153846153846154 3 14 021
290 2012 996291908 0.285714285714286 0.230769230769231 4 14 0.29
280 2012 1208264 3834 0.357142857142857 0.307692307692308 5 14 0.36

Figure 38. CUME_DIST and PERCENT_RANK give similar but not identical results.

Consider the results for 2011. There are 10 records, each with a different value for
TotalSales. CUME_DIST divides them into ten evenly-spaced groups. PERCENT_RANK does
the same, but the first record has a rank of 0. The query also demonstrates that you can
actually compute CUME_DIST by dividing the RANK of a row by the number of rows in the
partition (that is COUNT applied to the same partition).

Copyright 2015, Tamar E. Granor ~ Page 49 of 55

Going OVER and Above with SQL

One thing this example doesn’t show is what happens when there are ties in the data. You
should get a hint, though, from the fact that [used RANK (rather than RECORD_NUMBER)
when computing the equivalent of CUME_DIST. Both CUME_DIST and PERCENT_RANK
assign the same result to records with the same sort value. An updated version of the query
in Listing 12 demonstrates. The query in Listing 49 (EmployeeRankByDeptWithDist.SQL in
the materials for this session) ranks employees in each department by how long they’ve
been working there. As you can see in the partial results in Figure 39, when multiple
employees have the same start date, those employees share the same result both for
CUME_DIST and for PERCENT_RANK.

Listing 49. Both CUME_DIST and PERCENT_RANK assign the same value to ties.

SELECT FirstName, LastName, StartDate, Department.Name,
RANK() OVER
(PARTITION BY Department.DepartmentID ORDER BY StartDate) AS EmployeeRank,
CUME_DIST() OVER
(PARTITION BY Department.DepartmentID ORDER BY StartDate) AS CumeDist,
PERCENT_RANK() OVER
(PARTITION BY Department.DepartmentID ORDER BY StartDate) AS PctRank
FROM HumanResources.Employee
JOIN HumanResources.EmployeeDepartmentHistory EDH
ON Employee.BusinessEntityID = EDH.BusinessEntityID
JOIN HumanResources.Department
ON EDH.DepartmentID = Department.DepartmentID
JOIN Person.Person
ON Employee.BusinessEntityID = Person.BusinessEntityID
WHERE EndDate IS null

FirstName LastName StartDate Name EmployeeRank CumeDist PctRank

Owidiu Cracium 2010-12-05 Tool Design 3 0.75 0.666666666666667
Janice Galvin 2010-12-23 Tool Design 4 1 1

Stephen Jiang 2011-01-04 Sales 1 0.0555555555555556 0O

Brian Welcker 2011-02-15 Sales 2 0111111111111 0.0558235294117647
Michael Blythe 2011-05-31 Sales 3 0.611111111111111 0.117647058823529
Linda Mitchell 2011-09-31 Sales 3 0.611111111111111 0.117647058823529
Jillian Carson 2011-05-31 Sales 3 0.611111111111111 0.117647055823529
Garrett Vargas 2011-05-31 Sales 3 0.611111111111111 0.1176470585823529
Tsvi Reiter 2011-05-31 Sales 3 0611111111111 0.1176470585823529
Pamela Ansman-.. 2011-05-31 Sales 3 0.611111111111111 0.117647058823529
Shu lto 2011-09-31 Sales 3 0.611111111111111 0.117647058823529
Jose Saraiva 2011-05-31 Sales 3 0.611111111111111 0.117647055823529
David Campbell 2011-05-31 Sales 3 0.611111111111111 0.1176470585823529
Arny Alberts 2012-04-16 Sales 12 0.666666666666667 0.647058823529412
Jae Pak 2012-05-30 Sales 13 Q777777777777778 0.705882352941177

Figure 39. Records with the same value for the ordering expression are assigned the same result by both
CUME_DIST and PERCENT_RANK.

This query also helps to explain exactly what these two functions compute. CUME_DIST is
the fraction of records in the partition with the same value as or a lower value than the
current record for the ordering expression. So, there are 11 Sales employees who started

Copyright 2015, Tamar E. Granor ~ Page 50 of 55

Going OVER and Above with SQL

on or before 31-May-2011; that’s divided by 18 (the total number of employees in the Sales
department, which you can’t tell from this figure). That gives the result 0.61111 shown for
all nine employees who started that day.

The formula for PERCENT_RANK is much less obvious. It’s one less than rank divided by
one less than the group size, that is (RANK-1)/(COUNT-1). Subtracting one from the rank
ensures that PERCENT_RANK always begins with 0. The SQL Server documentation
describes this as the “relative rank of a row within a group of rows.”

You can also consider PERCENT_RANK as the percentile into which the record falls
(divided by 100). Though I was taught that you never have a 100t percentile, a little
research shows that some methods for computing percentile do, in fact, result in a 100th
percentile. Note though that, if there is a tie for the greatest value, then no record in that
partition has PERCENT_RANK = 1.

You're likely to want to multiply both CUME_DIST and PERCENT_RANK by 100 to get the
familiar percentage/percentile values we're used to dealing with.

One way you might use these functions is to eliminate outliers from a calculation. For
example, you might want to get a list of those products whose sales in a given year were in
the middle 50%, that is, between the 25th and 75t percentiles. Listing 50
(Middle50PctInSales.SQL in the materials for this session) shows how to do that using
PERCENT_RANK. It uses two CTEs. The first computes yearly total sales for each product.
The second uses PERCENT_RANK to rank the sales for each year. The main query then
simply keeps those records whose rank falls between 0.25 and 0.75, and adds some more
information about each product. Figure 40 shows partial results, ordered from lowest to
highest sales by year.

Listing 50. PERCENT_RANK makes it possible to keep only the middle range of values.

WITH csrProductSales (ProductID, nYear, TotalSales)
AS
(SELECT ProductID, YEAR(OrderDate), SUM(LineTotal)
FROM [Sales].[SalesOrderHeader] SOH
JOIN [Sales].[SalesOrderDetail] SOD
ON SOH.SalesOrderID = SOD.SalesOrderID
GROUP BY ProductID, YEAR(OrderDate)),

csrRankedProductSales (ProductID, nYear, TotalSales, PctRank)
AS
(SELECT ProductID, nYear, TotalSales,
PERCENT_RANK() OVER (PARTITION BY nYear ORDER BY TotalSales)
FROM csrProductSales)

SELECT Product.ProductID, Name, ProductNumber, nYear, TotalSales
FROM csrRankedProductSales
JOIN Production.Product
ON csrRankedProductSales.ProductID = Product.ProductID
WHERE PctRank BETWEEN ©.25 and 0.75
ORDER BY nYear, TotalSales;

Copyright 2015, Tamar E. Granor =~ Page 51 of 55

Going OVER and Above with SQL

ProductlD Name ProductNumber nYear TotalSales

2 | Long-Sleeve Logo Jersey, L LJ-0192-L 2011 15594 637060

733 " ML Road Frame - Red, 52 FR-R72R-52 2011 19629.390000
722 LL Road Frame - Black. 58 FR-R38B-58 2011 20001.049600
726 LL Road Frame - Red, 48 FR-R38R-48 2011 20968.954800
730 LL Road Frame - Red, 62 FR-R38R-62 2011 21888.645800
769 Road-650 Black. 48 BK-R508-48 2011 32158.515800
738 LL Road Frame - Black. 52 FR-R38B-52 2011 32323.124800
759 Road-650 Red, 58 BK-R50R-58 2011 33137.253400
729 LL Road Frame - Red. 60 FR-R38R-60 2011 33292.814200
725 LL Road Frame - Red, 44 FR-R38R-44 2011 34028.567000
767 Road-650 Black, 62 BK-R508-62 2011 41106.972700
757 Road-450 Red, 48 BK-RESR-45 2011 50738.052000
747 HL Mountain Frame - Black. 38 FR-M94B-38 2011 52173.413900
732 ML Road Frame - Red, 48 FR-R72R-48 2011 52464.006000
742 HL Mountain Frame - Silver, 46 FR-M945-46 2011 53472.022600

Figure 40. Only those products whose sales fell between the 25% and 75% percentile for the year are
included here.

The next section of this document shows another way to filter based on percentile
information.

Searching by percentile

The last two analytical functions, PERCENT_CONT and PERCENT_DISC, let you find the cut-
off value for a particular percentile. Each accepts a decimal value indicating which
percentile is desired; for example, specify .5 to return the median, that is, the value at the
50th percentile, and specify .99 to return the value at the 99t percentile.

The syntax for these functions is a little different than for any of the other functions you can
use with OVER. The syntax for PERCENTILE_DISC is shown in Listing 51; the syntax for
PERCENTILE_CONT is identical except, of course, for the function name.

Listing 51. The two percentile functions use a different syntax than the other functions that work with OVER.

PERCENTILE_DISC(number)
WITHIN GROUP (ORDER BY order_by expression [ASC | DESC])
OVER ([PARTITION BY <partition_by_expr>])

As usual, the PARTITION BY clause lets you break the results up into groups and apply the
function separately to each group. While the PARTITION BY clause is optional here, if you
want to apply the function to the whole result set as one group, you still have to include the
OVER keyword; follow it with empty parentheses.

The WITHIN GROUP clause sets the order used to determine percentiles.

The expression you pass to the function must be a number between 0 and 1. (That’s
another difference from the other functions that work with OVER.)

Copyright 2015, Tamar E. Granor =~ Page 52 of 55

Going OVER and Above with SQL

The difference between the two functions is in whether they return only values in the data
(PERCENTILE_DISC—"DISC” stands for “discrete”) or can interpolate between values to
give a more accurate answer (PERCENTILE_CONT—“CONT” stands for “continuous”).

The query in Listing 52 (TenurePercentile.SQL in the materials for this session) shows the
number of people in each department, and their average tenure in the department in days
(that is, how many days they’ve been in that department). Then, it computes the 25t, 50th
and 75t percentiles for tenure in the department, using each of the two methods. Figure
41 shows partial results.

Listing 52. PERCENTILE_CONT and PERCENTILE_DISC return the value that represents a specified
percentile.

WITH csrTenure (DepartmentID, DeptName, BusinessEntityID, DaysInDept)
AS
(SELECT Department.DepartmentID, Department.Name AS DeptName,
EDH.BusinessEntityID, DATEDIFF(DD,StartDate,GETDATE())
FROM
HumanResources.EmployeeDepartmentHistory EDH
JOIN HumanResources.Department
ON EDH.DepartmentID = Department.DepartmentID
WHERE EndDate IS null)

SELECT DISTINCT DeptName,

COUNT(BusinessEntityID) OVER (PARTITION BY DepartmentID) AS DeptSize,

AVG(DaysInDept) OVER (PARTITION BY DepartmentID) AS AvgTenure,

PERCENTILE_CONT(.25)
WITHIN GROUP (ORDER BY DaysInDept) OVER (PARTITION BY DepartmentID)
AS Cont25Pctile,

PERCENTILE_CONT(.5)
WITHIN GROUP (ORDER BY DaysInDept) OVER (PARTITION BY DepartmentID)
AS ContMedian,

PERCENTILE_CONT(.75)
WITHIN GROUP (ORDER BY DaysInDept) OVER (PARTITION BY DepartmentID)
AS Cont75Pctile,

PERCENTILE_DISC(.25)
WITHIN GROUP (ORDER BY DaysInDept) OVER (PARTITION BY DepartmentID)
AS Disc25Pctile,

PERCENTILE_DISC(.5)
WITHIN GROUP (ORDER BY DaysInDept) OVER (PARTITION BY DepartmentID)
AS DiscMedian,

PERCENTILE_DISC(.75)
WITHIN GROUP (ORDER BY DaysInDept) OVER (PARTITION BY DepartmentID)
AS Disc75Pctile

FROM csrTenure
ORDER BY DeptName;

Copyright 2015, Tamar E. Granor =~ Page 53 of 55

Going OVER and Above with SQL

DeptName DeptSize AvgTenure Cont25Pctile ContMedian Cont75Pctile Disc25Pctile DiscMedian Disc75Pctile
Document Control ‘5 2214 2198 2216 2234 2198 2216 2234
Engineering 5] 2234 1775 25765 25935 1509 2573 2598
Executive 2 1341 900.25 13415 1782.75 459 459 2224
Facilities and Maintenance 7 1904 18175 15846 18925 1809 1846 1902
Finance 10 2210 2190.75 2211 22305 2189 2208 2232
Human Resources 5] 2230 2210 22405 2253 2201 2237 2256
Information Services 10 2221 2203.25 22185 2241.25 2203 2216 2246
Marketing 9 2033 1501 2177 2226 1501 2177 2226
Production 179 2179 2181 2211 2245 2181 2211 2245
Production Control 5] 2061 21805 2203 224575 2176 2194 2257
Purchasing 12 1777 1737 1845 18735 1533 1846 1869
Quality Assurance 6 2154 21855 2214 22365 2179 2205 2241
Research and Development 4 2194 2178 22105 2226.5 2115 2189 2222
Sales 18 1168 992 1357 1357 992 1357 1357
Shipping and Receiving 5] 2233 22225 22395 2257.25 2218 2236 2262

Figure 41. Because PERCENTILE_CONT interpolates, the values it returns may not be in the original data.
PERCENTILE_DISC always returns an actual data value. The difference is particularly striking in the data for
the Executive department, which has only two employees.

These functions also let you find all the records above or below a certain percentile. For
example, suppose you want a list of the customers in the top 10% of spending each month.
That is, for each month, find the 90th percentile of customer spending and get a list of the
customers who spent that much or more. There are three parts to the solution to this
problem. First, compute customer spending by month. Second, find the 90t percentile of
spending for each month. Finally, check the individual customer totals for each month
against the 90t percentile value for that month. Listing 53 (included in the materials for
this session as CustomersAbove90thPercentile.SQL) shows the code. The query reflects the
three tasks. The first CTE computes customer totals by month. The second CTE finds the
cutoff for the 90th percentile for each month, using the computed totals. Finally, the main
query joins the two CTE results, matching them by month and year, and keeps only those
where the customer’s total is at least the cutoff amount.

Listing 53. PERCENTILE_CONT lets us find customers whose purchases were in the 90t percentile or above
for each month.

WITH csrSalesByCustomer (CustomerID, nMonth, nYear, TotalSales)

AS

(SELECT CustomerID, MONTH(OrderDate), YEAR(OrderDate), SUM(SubTotal)
FROM [Sales].[SalesOrderHeader]
GROUP BY CustomerID, MONTH(OrderDate), Year(OrderDate)),

csrNinetiethPctile (nMonth, nYear, Cutoff)
AS
(SELECT DISTINCT nMonth, nYear,
PERCENTILE_CONT(.9) WITHIN GROUP (ORDER BY TotalSales)
OVER (PARTITION BY nMonth, nYear)
FROM csrSalesByCustomer)

SELECT CustomerID, SBC.nMonth, SBC.nYear, SBC.TotalSales, NPtile. Cutoff
FROM csrSalesByCustomer SBC
JOIN csrNinetiethPctile NPtile

Copyright 2015, Tamar E. Granor ~ Page 54 of 55

Going OVER and Above with SQL

ON SBC.nMonth = NPtile.nMonth
AND SBC.nYear = NPtile.nYear
WHERE SBC.TotalSales >= NPtile.Cutoff
ORDER BY nYear, nMonth, TotalSales DESC;

Figure 42 shows partial results; the surprising data for June, 2011 is because every
customer who made a purchase that month spent the same amount. (Sounds like someone
populating these sample tables got a little lazy.)

CustomerlD nMonth nYear TotalSales Cutoff

2011 42813.4333 3374319188
29958 J 5 2011 39373.781 3374319188
29992 5 2011 385108973 3374319188
29614 5 2011 35944 1562 3374319188
29646 5 2011 33997 3702 3374319188
11611 6 2011 357827 357827
13260 6 2011 357827 357827
13591 6 2011 357827 357827
16515 6 2011 357827 357827
16518 6 2011 357827 357827
16521 6 2011 357827 357827
16524 6 2011 357827 357827
27578 6 2011 357827 357827
27616 6 2011 357827 357827
27645 6 2011 357827 357827

Figure 42. Only customers in the top 10% of sales for the month are included in this result.

In fact, you can use a query analogous to this one to find the products in the middle 50% of
sales for each year. That is, you can rewrite the example in Listing 50 using
PERCENTILE_CONT; Middle50PercentInSales-Percentile.SQL in the materials for this
session does just that.

You might also use these to build a table of percentiles for a standardized test, or to crunch
data for political discussions about income and taxation.

OVER and out

The more time I spend with the functions that work with OVER, the more amazed I am at
the number of problems you can solve with them. The ability to apply these functions to
groups within a query and to narrow the set of records they use makes them extremely
powerful. In preparing this session, I spent many hours trying different variations of
functions and clauses to fully understand what OVER offers. I hope this paper gives you a
jumpstart on that process, but I still recommend trying lots of variations on your own
database.

Copyright 2015, Tamar E. Granor ~ Page 55 of 55

	Introduction
	CTEs: A quick review
	Ranking records
	The VFP solution
	SQL plus Xbase
	SQL-only

	The SQL Server solution
	Partitioning with OVER

	Deduping
	Which function to use?
	Dividing into percentiles

	Aggregate functions
	Computing percentages
	Counting groups
	Running totals, running counts and moving averages
	Aggregating subsets within partitions

	Analytical functions
	Comparing across records
	Looking at first and last records
	Showing distribution of records
	Searching by percentile

	OVER and out

