
Going OVER and Above with
SQL

Tamar E. Granor
Tomorrow's Solutions, LLC

Voice: 215-635-1958
Email: tamar@tomorrowssolutionsllc.com

The SQL 2003 standard introduced the OVER keyword that lets you apply a function to a set
of records. Introduced in SQL Server 2005, this capability was extended in SQL Server 2012.
The functions allow you to rank records, aggregate them in a variety of ways, put data from
multiple records into a single result record, and compute and use percentiles. The set of
problems they solve range from removing exact duplicates to computing running totals and
moving averages to comparing data from different periods to removing outliers.

In this session, we'll look at the OVER operator and the many functions you can use with it.
We'll look at a variety of problems that can be solved using OVER.

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 2 of 55

Over the last couple of years, I’ve been exploring aspects of SQL Server’s T-SQL
implementation that aren’t included in VFP’s SQL sub-language. I first noticed the OVER
keyword as an easy way to solve a problem that’s fairly complex with VFP’s SQL, getting the
top N records in each of a set of groups with a single query. At the time, I noticed that OVER
had other uses, but I didn’t stop to explore them.

When I finally returned to see what else OVER could do, I was blown away. In recent
versions of SQL Server (2012 and later), OVER provides ways to compute running totals
and moving averages, to put data from several records of the same table into a single result
record, to divide records into percentile groups and more.

The more I looked at this capability, the more impressed I became, so I decided that while
doing a session on a single aspect of a single command seems odd, there was good reason
to do so.

Introduction
The formal name for the set of capabilities provided by the OVER clause is “window
functions.” They were introduced in the ANSI SQL 2003 standard and extended in the 2008
standard. Support for window functions was introduced in SQL Server 2005 and
significantly enhanced in SQL Server 2012.

The basic idea with window functions is that you can define a set of records and apply a
function to only that set of records in order to specify a field in a query. There are several
ways to specify the set of records and they can be combined. The basic syntax for this is
shown in Listing 1; it applies to all the functions except PERCENTILE_CONT and
PERCENTILE_DISC. (See “Searching by percentile,” later in this document, for the syntax for
those two functions.) The three optional clauses inside the parentheses provide the
definition for the set of records. Table 1 shows the list of window functions.

Listing 1. Most of the window functions use this syntax.

<window function> OVER (
 [PARTITION BY <list of expressions>]
 [ORDER BY <list of <expression> ASC | DESC>>]
 [ROWS | RANGE <window frame>])

Table 1. SQL Server supports quite a few window functions. Support has improved over time.

Function Version
introduced

Group Action Comments Example uses

ROW_NUMBER 2005 Ranking Assigns a number
to each row of
each partition;
within each
partition, the
number is unique.

ORDER BY must
be included.

Assigning serial
numbers,
randomly
ordering
groups,
deduping,
paging

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 3 of 55

Function Version
introduced

Group Action Comments Example uses

RANK 2005 Ranking Assigns a number
to each row of
each partition.
Records with the
same value for
the ordering
expression are
assigned the
same rank. Skips
values after ties
(e.g., 1, 2, 3, 3, 5).

ORDER BY must
be included.

Top N for each
partition

DENSE_RANK 2005 Ranking Assigns a number
to each row of
each partition.
Records with the
same value for
the ordering
expression are
assigned the
same rank. No
values are
skipped after ties.
(e.g., 1, 2, 3, 3, 4)

ORDER BY must
be included.

Numbering
distinct values

NTILE 2005 Ranking Divides the
records in each
partition into a
specified number
of groups as
evenly as
possible.

ORDER BY must
be included.

Determine
quartiles,
quintiles, or
deciles (or any
other …iles).

SUM 2005 Aggregates Computes the
total of the
specified
expression for the
records in the
specified
partition.

ORDER BY and
window frame
capability was
added in SQL
Server 2012.

Totaling on
multiple levels
in a single
query; in 2012
and later,
running totals.

AVG 2005 Aggregates Computes the
average of the
specified
expression for the
records in the
specified
partition.

ORDER BY and
window frame
capability was
added in SQL
Server 2012.

Averaging on
multiple levels
in a single
query; in 2012
and later,
moving
averages.

MIN 2005 Aggregates Finds the
minimum value
of the specified
expression for the
records in the
specified
partition.

ORDER BY and
window frame
capability was
added in SQL
Server 2012.

Finding
minimum value
on multiple
levels in a single
query; in 2012
and later,
“minimums to
date.”

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 4 of 55

Function Version
introduced

Group Action Comments Example uses

MAX 2005 Aggregates Finds the
maximum value
of the specified
expression for the
records in the
specified
partition.

ORDER BY and
window frame
capability was
added in SQL
Server 2012.

Finding
maximum value
on multiple
levels in a single
query; in 2012
and later,
“maximums to
date.”

COUNT
COUNTBIG

2005 Aggregates Counts the
records in the
specified
partition.

COUNT returns an
Int; COUNTBIG
returns a BigInt.
ORDER BY and
window frame
capability was
added in SQL
Server 2012.

Counting on
multiple levels
in a single
query; in 2012
and later,
running counts.

VAR
VARP

2005 Aggregates Computes the
variance of the
expression for the
records in the
specified
partition.

VAR computes the
variance for the
sample; VARP
computes the
variance for the
population.
ORDER BY and
window frame
capability was
added in SQL
Server 2012.

Compute
variance for
multiple levels
in a single
query.

STDEV
STDEVP

2005 Aggregates Computes the
standard
deviation of the
expression for the
records in the
specified
partition.

STDEV computes
the standard
deviation for the
sample; STDEVP
computes the
standard deviation
for the population.
ORDER BY and
window frame
capability was
added in SQL
Server 2012.

Compute
standard
deviation for
multiple levels
in a single
query.

LAG 2012 Analytic Provides the
value of the
specified
expression for a
prior row in the
specified
partition.

ORDER BY must
be included.
Optional
parameters let you
specify how far
back to look and a
default value.

Compare
multiple data
points (such as
data from
multiple
reporting
periods) in a
single record.
Fill in missing
values in a
sequence.

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 5 of 55

Function Version
introduced

Group Action Comments Example uses

LEAD 2012 Analytic Provides the
value of the
specified
expression for a
subsequent row
in the specified
partition.

ORDER BY must
be included.
Optional
parameters let you
specify how far
forward to look
and a default
value.

Compare
multiple data
points (such as
data from
multiple
reporting
periods) in a
single record.
Fill in missing
values in a
sequence.

FIRST_VALUE 2012 Analytic Provides the
value of the
specified
expression for the
first record in the
specified
partition.

ORDER BY must
be included.

Pull data from
“minimum”
record (such as
year of fewest
sales) of a
partition into
other records.

LAST_VALUE 2012 Analytic Provides the
value of the
specified
expression for the
last record in the
specified
partition.

ORDER BY must
be included. “Last”
is interpreted as
“current” unless
window frame is
specified.

Pull data from
“maximum”
record (such as
year of most
sales) of a
partition into
other records.

CUME_DIST 2012 Analytic Computes
relative position
of a record in the
specified
partition, based
on the specified
order.

ORDER BY must
be included. Each
record is assigned
a value between 0
and 1; 0 is not
used. Records with
the same value for
the specified order
are assigned the
same value.

Remove outliers
(say, top and
bottom 5%).

PERCENT_RANK 2012 Analytic Computes
relative rank of a
row in the
specified
partition, based
on the specified
order.

ORDER BY must
be included. Each
record is assigned
a value between 0
and 1. Records
with the same
value for the
specified order are
assigned the same
value.

Remove outliers
(say, top and
bottom 5%).

PERCENTILE_CONT 2012 Analytic Returns the value
at the specified
percentile in the
specified
partition, based
on the specified
order.

ORDER BY must
be included.
Interpolates to
provide a
continuous set of
values.

Find the median
for each group,
find all records
at or above (or
at or below) a
given
percentile.

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 6 of 55

Function Version
introduced

Group Action Comments Example uses

PERCENTILE_DISC 2012 Analytic Returns the value
at the specified
percentile in the
specified
partition, based
on the specified
order.

ORDER BY must
be included. Does
not interpolate;
only returns
values actually in
the partition.

Find the median
for each group,
find all records
at or above (or
at or below) a
given
percentile.

The PARTITION BY clause lets you divide the data into groups, much like GROUP BY.
However, GROUP BY consolidates all the records with matching values into a single result
record. PARTITION BY simply indicates the groups of records to which the specified
function should be applied. The original records still appear in the result set.

This ability to divide records into groups for a single calculation is one of the big benefits of
OVER. It means that, in a single query, you can compute aggregated results based on
different groupings. For example, you might compute a salesperson’s total sales by day,
week, month and year, and put each of those in a separate column of a single record. The
result set would have one record for each day, but each record would include weekly,
monthly and annual totals. (There are examples like this in “Aggregate functions,” later in
this document.)

The ORDER BY clause indicates the order in which records are processed by the specified
function. For the ranking functions and some of the analytic functions, ORDER BY is
required as it’s the ordering that determines the results. For other functions, ORDER BY is
optional, but if it’s used, it has an impact on the results. For example, using ORDER BY with
SUM lets you compute running totals. (See “Running totals, running counts and moving
averages,” later in this document for examples.)

Window frame specification using RANGE and ROWS lets you apply a function to a subset
of a partition; it was added in SQL Server 2012. RANGE lets you limit the calculation to a
group of rows based on their values for the ordering expression, while ROWS lets you limit
the calculation to a set number of rows around the current row. See “Aggregating subsets
within partitions,” later in this document, for more explanation and examples.

Before digging into the window functions and showing how to use them, it’s worth
commenting on the choice of the keyword “OVER,” which may seem odd. I’m fairly certain
the term is drawn from mathematics, where it’s used to refer to the domain of a function.
That is, a function that applies to the integers is sometimes referred to as a function “over
the integers.”

The same idea applies here, because we’re specifying the domain for the function using
PARTITION, ORDER and window frame.

In the rest of this paper, we’ll look at each group of functions; along the way, we’ll explore
PARTITION, ORDER and window frames in detail. VFP examples in this paper use the
Northwind database; SQL Server examples use the AdventureWorks 2014 database; those

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 7 of 55

examples that work in earlier versions can be run against AdventureWorks 2008, but the
results may vary from those shown here. You can download AdventureWorks 2014 from
https://msftdbprodsamples.codeplex.com/releases/view/125550; the same page links to
a ReadMe file with instructions for installation.

CTEs: A quick review
Before digging in, I want to quickly cover common table expressions or CTEs, as they’re
generally called. Many of the examples in the rest of this document use CTEs, so I want to
be sure you understand what they are and how they work.

A CTE is a query executed before the main query, in order to collect some data to be used in
the main query. It’s very similar to a derived table (that is, a query in the FROM clause), but
easier to read and more useful. A CTE is easier to read because it’s isolated from the main
query rather than embedded in it. It’s more useful because you can refer to the same CTE
multiple times in the main query.

Listing 2 shows the syntax of a query with a CTE. The key elements are the WITH clause
that names the CTE, the AS clause that contains the CTE query, and the main query that
presumably uses the CTE.

Listing 2. A CTE is analogous to a derived table, but more useful.

WITH CTEName [(list of field names)]
AS
(SELECT <rest of query>)

SELECT <field list>
 FROM <tables, presumably including CTEName, and join conditions>
 <rest of query>

Listing 3 shows a fairly simple use of a CTE; it’s included in the materials for this session as
AnnualProductSales.SQL. The CTE groups data and the main query joins the grouped data
to an underlying look-up table to provide descriptions. In this case, you could, in fact,
simply add the product name to the field list and the GROUP BY clause and get the same
results, but I think this version is easier to maintain.

Listing 3. Here the CTE computes annual sales totals for each product, and the main query adds the product
name.

WITH csrSalesByProduct (ProductID, nYear, TotalSales)
AS
(SELECT ProductID, YEAR(OrderDate), SUM(LineTotal)
 FROM [Sales].[SalesOrderHeader] SOH
 JOIN [Sales].[SalesOrderDetail] SOD
 ON SOH.SalesOrderID = SOD.SalesOrderDetailID
 GROUP BY ProductID, YEAR(OrderDate))

SELECT SBP.ProductID, Name, nYear, TotalSales
 FROM csrSalesByProduct SBP
 JOIN Production.Product

https://msftdbprodsamples.codeplex.com/releases/view/125550

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 8 of 55

 ON SBP.ProductID = Product.ProductID
 ORDER BY nYear, TotalSales DESC;

Be aware that you can have multiple CTEs in a single query; they’re comma-separated
(following the terminating parenthesis for the CTE definition). Any CTE can list any
preceding CTE in its own FROM clause.

Ranking records
As I indicated, my first foray into OVER was for finding the top N records in each group.
Both VFP and SQL Server include the TOP n clause, which allows you to include in the
result only the first n records that match a query’s filter conditions. But TOP n doesn’t work
when what you really want is the TOP n for each group in the query.

Suppose a company wants to know its top five salespeople for each year in some period. In
VFP, you need to combine SQL with Xbase code or use a trick to get the desired results.
With SQL Server, thanks to OVER, you can do it with a single query.

The VFP solution

Collecting the basic data you need to solve this problem in VFP is straightforward. Listing 4
(EmployeeSalesByYear.PRG in the materials for this session) shows a query that provides
each employee’s sales by year; Figure 1 shows part of the results.

Listing 4. Getting total sales by employee by year is easy in VFP.

SELECT FirstName, LastName, ;
 YEAR(OrderDate) as OrderYear, ;
 SUM(UnitPrice*Quantity) AS TotalSales ;
 FROM Employees ;
 JOIN Orders ;
 ON Employees.EmployeeID = Orders.EmployeeID ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2, 3 ;
 ORDER BY OrderYear, TotalSales DESC ;
 INTO CURSOR csrEmployeeSalesByYear

Figure 1. The query in Listing 4 produces the total sales for each employee by year.

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 9 of 55

However, when you want to keep only the top five for each year, you need to either
combine SQL code with some Xbase code or use a bit of a trick that can result in a
significant slowdown with large datasets.

SQL plus Xbase

The mixed solution is easier to follow, so let’s start with that one. The idea is to first select
the raw data needed, in this case, the total sales by employee by year. Then we loop
through on the grouping field, and select the top n (five, in this case) in each group and put
them into a cursor. Listing 5 (TopnEmployeeSalesByYear-Loop.PRG in the materials for
this session) shows the code; Figure 2 shows the result.

Listing 5. One way to find the top n in each group is to collect the data, then loop through it by group.

SELECT EmployeeID, ;
 YEAR(OrderDate) as OrderYear, ;
 SUM(UnitPrice*Quantity) AS TotalSales ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2 ;
 INTO CURSOR csrEmpSalesByYear

CREATE CURSOR csrTopEmployeeSalesByYear ;
 (FirstName C(10), LastName C(20), ;
 OrderYear N(4), TotalSales Y)

SELECT distinct OrderYear ;
 FROM csrEmpSalesByYear ;
 INTO CURSOR csrYears

LOCAL nYear

SCAN
 nYear = csrYears.OrderYear

 INSERT INTO csrTopEmployeeSalesByYear ;
 SELECT TOP 5 FirstName, LastName, OrderYear, TotalSales ;
 FROM Employees ;
 JOIN csrEmpSalesByYear ;
 ON Employees.EmployeeID = csrEmpSalesByYear.EmployeeID ;
 WHERE csrEmpSalesByYear.OrderYear = m.nYear ;
 ORDER BY OrderYear, TotalSales DESC

ENDSCAN

USE IN csrYears
USE IN csrEmpSalesByYear
SELECT csrTopEmployeeSalesByYear

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 10 of 55

Figure 2. The query in Listing 5 produces these results.

The first query is just a simpler version of Listing 4, omitting the Employees table and the
ORDER BY clause; both of those are used later. Next, we create a cursor to hold the final
results. Then, we get a list of the years for which we have data. Finally, we loop through the
cursor of years and, for each, grab the top five salespeople for that year, and put them into
the result cursor, adding the employee’s name and sorting as we insert.

You can actually consolidate this version a little by turning the first query into a derived
table in the query inside the INSERT command. Listing 6 (TopnEmployeeSalesByYear-
Loop2.PRG in the materials for this session) shows the revised version. Note that you have
to get the list of years directly from the Orders table in this version. This version, of course,
gives the same results.

Listing 6. The code in Listing 5 can be reworked to use a derived table to compute the totals for each year.

CREATE CURSOR csrTopEmployeeSalesByYear ;
 (FirstName C(10), LastName C(20), ;
 OrderYear N(4), TotalSales Y)

SELECT distinct YEAR(OrderDate) AS OrderYear ;
 FROM Orders ;
 INTO CURSOR csrYears

LOCAL nYear

SCAN
 nYear = csrYears.OrderYear

 INSERT INTO csrTopEmployeeSalesByYear ;
 SELECT TOP 5 FirstName, LastName, OrderYear, TotalSales ;
 FROM Employees ;
 JOIN (;
 SELECT EmployeeID, ;
 YEAR(OrderDate) as OrderYear, ;
 SUM(UnitPrice * Quantity) AS TotalSales ;
 FROM Orders ;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 11 of 55

 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 WHERE YEAR(OrderDate) = m.nYear ;
 GROUP BY 1, 2) csrEmpSalesByYear ;
 ON Employees.EmployeeID = csrEmpSalesByYear.EmployeeID ;
 ORDER BY OrderYear, TotalSales DESC

ENDSCAN

USE IN csrYears
SELECT csrTopEmployeeSalesByYear

SQL-only

The alternative VFP solution uses only SQL commands, but relies on a trick of sorts. Like
the mixed solution, it starts with a query to collect the basic data needed. It then joins that
data to itself in a way that results in multiple records for each employee/year combination
and uses GROUP BY and HAVING to keep only those that represent the top n records.
Finally, it adds the employee name. Listing 7 (TopNEmployeeSalesByYear-Trick.prg in the
materials for this session) shows the code.

Listing 7. This solution uses only SQL, but requires a tricky join condition.

SELECT EmployeeID, ;
 YEAR(OrderDate) as OrderYear, ;
 SUM(UnitPrice * Quantity) AS TotalSales ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2 ;
 INTO CURSOR csrEmpSalesByYear

SELECT FirstName, LastName, OrderYear, TotalSales ;
 FROM Employees ;
 JOIN (;
 SELECT ESBY1.EmployeeID, ESBY1.OrderYear, ESBY1.TotalSales ;
 FROM csrEmpSalesByYear ESBY1 ;
 JOIN csrEmpSalesByYear ESBY2 ;
 ON ESBY1.OrderYear = ESBY2.OrderYear ;
 AND ESBY1.TotalSales >= ESBY2.TotalSales ;
 GROUP BY 1, 2, 3 ;
 HAVING COUNT(*) <= 5) csrTop5;
 ON Employees.EmployeeID = csrTop5.EmployeeID ;
 ORDER BY OrderYear, TotalSales DESC ;
 INTO CURSOR csrTopEmployeeSalesByYear

The first query here is just a variant of Listing 4. The key portion of this approach is the
derived table in the second query, in particular, the join condition between the two
instances of csrEmpSalesByYear, shown in Listing 8. Records are matched up first by
having the same year and then by having sales in the first instance of the table be the same
or more than sales in the second instance. This join condition results in a single record for
the employee from that year with the highest sales total, two records for the employee with
the second highest sales total and so on.

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 12 of 55

Listing 8. The key to this solution is the unorthodox join condition between two instances of the same table.

FROM csrEmpSalesByYear ESBY1 ;
 JOIN csrEmpSalesByYear ESBY2 ;
 ON ESBY1.OrderYear = ESBY2.OrderYear ;
 AND ESBY1.TotalSales >= ESBY2.TotalSales

The GROUP BY and HAVING clauses then combine all the records for a given employee and
year, and keeps only those where the number of records in the intermediate result is five or
fewer (that is, where the count of records in the group is five or less), providing the top five
salespeople for each year.

To make more sense of this solution, first consider the query in Listing 9 (included in the
materials for this session as TopNEmployeeSalesByYearBeforeGrouping.prg). It assumes
we’ve already run the query to create the EmpSalesByYear cursor. It shows the results
from the derived table in Listing 7 before applying GROUP BY. In the partial results shown
in Figure 3, you can see one record for employee 9 in 1996, two for employee 6, three for
employee 7 and so forth. (If this still doesn’t make sense, try adding the fields
ESBY2.EmployeeID and ESBY2.TotalSales to the field list, so you can see that each row
represents an employee with the same or lower total sales as the one you’re looking at.)

Listing 9. This query demonstrates the intermediate results for the derived table in Listing 7.

SELECT ESBY1.EmployeeID, ESBY1.OrderYear, ESBY1.TotalSales ;
 FROM EmpSalesByYear ESBY1 ;
 JOIN EmpSalesByYear ESBY2 ;
 ON ESBY1.OrderYear = ESBY2.OrderYear ;
 AND ESBY1.TotalSales >= ESBY2.TotalSales ;
 ORDER BY ESBY1.OrderYear, ESBY1.TotalSales ;
 INTO CURSOR csrIntermediate

Figure 3. The query in Listing 9 unfolds the data that’s grouped in the derived table.

The problem with this approach to the problem is that, as the size of the original data
increases, it can get bogged down. So while this solution has a certain elegance, in the long
run, a SQL plus Xbase solution is probably a better choice.

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 13 of 55

The SQL Server solution

Finding the top 5 salespeople for each year in SQL Server uses a couple of CTEs and the
OVER clause with one of the ranking functions. To work through the steps involved, though,
we’ll start with a slightly easier TOP n by group problem: find the three longest-standing
employees in each department.

To do this, we want to rank records within a group and then keep the first n. My first
instinct was to use the ROW_NUMBER function, which, as its name suggests, returns the
row number of a record within a group (or the entire result set, if no grouping is specified).

For example, Listing 10 (included in the materials for this session as
EmployeeOrderNumber.SQL) shows a query that lists AdventureWorks employees in the
order they were hired, giving each an "employee order number." Here, the data is ordered
by HireDate and then ROW_NUMBER applied to provide the position of each record. Figure
4 shows partial results.

Listing 10. Using ROW_NUMBER with OVER lets you give records a rank.

SELECT FirstName, LastName, HireDate,
 ROW_NUMBER() OVER (ORDER BY HireDate) AS EmployeeOrderNumber
 FROM HumanResources.Employee
 JOIN Person.Person
 ON Employee.BusinessEntityID = Person.BusinessEntityID;

Figure 4. The query in Listing 10 applies a rank to each employee by hire date.

But look at Ruth Ellerbock and Gail Erickson; they have the same hire date, but different
values for EmployeeOrderNumber. Sometimes, that’s what you want, but sometimes, you
want such records to have the same value.

The ROW_NUMBER function doesn’t know anything about ties. However, the RANK
function is aware of ties and assigns them the same value, and then skips the appropriate
number of values. Listing 11 (EmployeeRank.SQL in the materials for this session) shows
the same query using RANK instead of ROW_NUMBER; Figure 5 shows the first few

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 14 of 55

records. This time, you can see that Ellerbock and Erickson have the same rank, 8, while
Barry Johnson, who immediately follows them, still has a rank of 10.

Listing 11. The RANK function is aware of ties, assigning them the same value.

SELECT FirstName, LastName, HireDate,
 RANK() OVER (ORDER BY HireDate) AS EmployeeOrderNumber
 FROM HumanResources.Employee
 JOIN Person.Person
 ON Employee.BusinessEntityID = Person.BusinessEntityID;

Figure 5. Using RANK assigns the same EmployeeRank to records with the same hire date.

You can’t say that either ROW_NUMBER or RANK is right; which one you want depends on
the situation. In fact, there’s a third related function, DENSE_RANK that behaves like RANK,
giving ties the same value, but then continues numbering in order. That is, if we used
DENSE_RANK in this example, Barry Johnson would have a rank of 9, rather than 10.

Partitioning with OVER

In addition to specifying ordering, OVER also allows us to divide the data into groups
before applying the function, using the PARTITION BY clause. The query in Listing 12
(included in the materials for this session as EmployeeRankByDept.SQL) assigns employee
ranks within each department rather than for the company as a whole by using both
PARTITION BY and ORDER BY. We’re now using the StartDate field of
EmployeeDepartmentHistory rather than the HireDate field, because we want to know
when the employee joined the department, not when she was hired. (Note that we also look
only at records where EndDate is null, so that we consider only people’s current
assignments.) Figure 6 shows partial results; note that the numbering begins again for
each department and, as before, that ties have the same value.

Listing 12. Combining PARTITION BY and ORDER BY in the OVER clause lets you apply ranks within a group.

SELECT FirstName, LastName, StartDate,
 Department.Name,
 RANK() OVER

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 15 of 55

 (PARTITION BY Department.DepartmentID ORDER BY StartDate) AS EmployeeRank
FROM HumanResources.Employee
 JOIN HumanResources.EmployeeDepartmentHistory
 ON Employee.BusinessEntityID = EmployeeDepartmentHistory.BusinessEntityID
 JOIN HumanResources.Department
 ON EmployeeDepartmentHistory.DepartmentID = Department.DepartmentID
 JOIN Person.Person
 ON Employee.BusinessEntityID = Person.BusinessEntityID
 WHERE EndDate IS null;

Figure 6. Here, employees are numbered within their current department, based on when they started in that
department.

This example should provide a hint as to how we’ll solve the TOP n by group problem, since
we now have a way to number things by group. All we need to do is filter so we only keep
those whose rank within the group is in the range of interest. However, it’s not possible to
filter on the computed field EmployeeOrderNumber in the same query. Instead, we turn
that query into a CTE and filter in the main query, as in Listing 13
(LongestStandingEmployeesByDept.SQL in the materials for this session).

Listing 13. Once we have the rank for an item within its group, we just need to filter to get the TOP n items by
group.

WITH EmpRanksByDepartment AS
(SELECT FirstName, LastName, StartDate,
 Department.Name AS Department,
 RANK() OVER
 (PARTITION BY Department.DepartmentID ORDER BY StartDate) AS EmployeeRank
 FROM HumanResources.Employee
 JOIN HumanResources.EmployeeDepartmentHistory
 ON Employee.BusinessEntityID = EmployeeDepartmentHistory.BusinessEntityID
 JOIN HumanResources.Department
 ON EmployeeDepartmentHistory.DepartmentID = Department.DepartmentID
 JOIN Person.Person
 ON Employee.BusinessEntityID = Person.BusinessEntityID

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 16 of 55

 WHERE EndDate IS NULL)

 SELECT FirstName, LastName, StartDate, Department
 FROM EmpRanksByDepartment
 WHERE EmployeeRank <= 3
 ORDER BY Department, StartDate;

Figure 7 shows part of the result. Note that there are many more than three records for the
Sales department because a whole group of people started on the same day. If you really
want only three per department and don’t care which records you omit from a last-place
tie, use RECORD_NUMBER instead of RANK.

Figure 7. The query in Listing 13 provides the three longest-standing employees in each department. When
there are ties, it may produce more than three results.

Applying the same principle to finding the top five salespeople by year at AdventureWorks
(to match our VFP example) is a little more complicated because we have to compute sales
totals first. To make that work, we first use a CTE to compute those totals and then a
second CTE based on that result to add the ranks. Listing 14 (TopSalesPeopleByYear.SQL
in the materials for this session) shows the complete query.

Listing 14. Finding the top five salespeople by year requires cascading CTEs, plus the OVER clause.

WITH TotalSalesBySalesPerson AS
(SELECT BusinessEntityID, YEAR(OrderDate) AS nYear, SUM(SubTotal) AS TotalSales
 FROM Sales.SalesPerson
 JOIN Sales.SalesOrderHeader
 ON SalesPerson.BusinessEntityID = SalesOrderHeader.SalesPersonID
GROUP BY BusinessEntityID, YEAR(OrderDate)),

RankSalesPerson AS
(SELECT BusinessEntityID, nYear, TotalSales,
 RANK() OVER (PARTITION BY nYear ORDER BY TotalSales DESC) AS nRank
 FROM TotalSalesBySalesPerson)

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 17 of 55

SELECT FirstName, LastName, nYear, TotalSales
 FROM RankSalesPerson
 JOIN Person.Person
 ON RankSalesPerson.BusinessEntityID = Person.BusinessEntityID
 WHERE nRank <= 5;

The first CTE, TotalSalesBySalesPerson, contains the ID for the salesperson, the year and
that person‘s total sales for the year. The second CTE, RankSalesPerson, adds rank within
the group to the data from TotalSalesByPerson. Finally, the main query keeps only the top
five in each and adds the actual name of the person. Figure 8 shows partial results.

Figure 8. These partial results show the top five salespeople by year.

With the basics covered, let’s look at some other uses for OVER with the ranking functions.

Deduping

One of the most straightforward uses for OVER is identifying and removing duplicate
records. Deduping data is a big question and generally more of a business problem than a
code problem. That is, usually, the problem is having multiple similar, but not identical,
records; for example, some organizations have a record for me alone, as well as one for me
and my husband as a couple. No code alone is going to solve that problem.

However, OVER is very handy for the narrower problem of having records that are
identical in some list of fields. To identify the duplicates, we can partition on the fields that
must be the same to indicate a match, and assign each record in the partition a unique
value. Then, we can delete all the extras.

Because I don’t want to delete records from the sample AdventureWorks database, this
example uses a copy of the Person table, created as shown in Listing 15.

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 18 of 55

Listing 15. This code creates a temporary table #People containing the primary key and name information
from the AdventureWorks Person table.

CREATE TABLE #People
 (PersonID INT, FirstName nVarchar(50),
 MiddleName nVarchar(50), LastName nVarchar(50));

INSERT INTO #People
 SELECT BusinessEntityID, FirstName, MiddleName, LastName
 FROM Person.Person;

The first step in deduping is matching records with the exact same name and assigning
each a different number. You can do that with the query in Listing 16. In this case, we
order the duplicates by their primary key, PersonID, because we need some ordering; you
could use any of the fields in the query in the ORDER BY. Partial results are shown in
Figure 9; note that the two records for Aaron Con are assigned 1 and 2 respectively in the
RecNo column.

Listing 16. This query matches records by name and assigns each a unique number within those with the
same name.

SELECT PersonID, FirstName, MiddleName, LastName,
 ROW_NUMBER() OVER
 (PARTITION BY FirstName, MiddleName, LastName
 ORDER BY PersonID) As RecNo
 FROM #People;

Figure 9. The instances of each name are numbered, starting at 1, providing a way to identify duplicates.

To dedupe the #People table, we need to delete all the records where RecNo is greater than
1. The solution uses a CTE and the SQL DELETE command. The CTE is similar to the query
in Listing 16, but doesn’t include the name fields in its field list. The full query to dedupe the
table is shown in Listing 17.

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 19 of 55

Listing 17. To remove exact duplicates from a table, use ROW_NUMBER to number each copy and then delete
all those whose number is not 1.

WITH csrFindDups (PersonID, RecNo)
AS
(SELECT PersonID,
 ROW_NUMBER() OVER
 (PARTITION BY FirstName, MiddleName, LastName
 ORDER BY PersonID)
 FROM #People)

DELETE FROM #People
 WHERE PersonID IN (SELECT PersonID FROM csrFindDups WHERE RecNo > 1);

The materials for this session include DeDupe.SQL, which creates the #People table,
dedupes it, and then deletes it. To demonstrate that it works, it shows the count for the
table before and after deduping.

Which function to use?

As indicated above, there are three functions that return similar, but not identical results:
ROW_NUMBER, RANK, and DENSE_RANK. We’ve seen examples for ROW_NUMBER
(deduping) and RANK (finding the top N), but when else would you use these and how do
you know which one to use?

Another use for ROW_NUMBER is randomly ordering groups. The idea is to assign each
record a random number and then use ROW_NUMBER against that field to generate a
random ordering.

The first step, assigning each record a random number, is a little harder than you might
expect. Calling SQL Server’s RAND function with no parameters in a query produces the
same result on each row. That is, SQL Server collapses it to a single call. There are a variety
of solutions (see, for example, http://tinyurl.com/n58svm5), but most of them boil down to
using CHECKSUM(NEWID())). Listing 18 (included in the materials for this session as
RandomOrderInDept.SQL) demonstrates the one that looks best to me. The CTE calls
RAND, passing CHECKSUM(NEWID()) as a seed, thus ensuring that the function is called for
each row. The main query applies ROW_NUMBER to the random field. Figure 10 shows
partial results; note that the results will change each time you run the query.

Listing 18. You can use ROW_NUMBER to randomly order records within groups.

WITH EmpsByDept (BusinessEntityID, StartDate, DepartmentID, RandVal)
AS
(SELECT BusinessEntityID, StartDate, DepartmentID, RAND(CHECKSUM(NEWID()))
 FROM HumanResources.EmployeeDepartmentHistory
 WHERE EndDate IS null
)
SELECT FirstName, LastName, StartDate, Department.Name,
 ROW_NUMBER() OVER (PARTITION BY Department.DepartmentID ORDER BY RandVal) AS
EmployeeRand
 FROM EmpsByDept

http://tinyurl.com/n58svm5

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 20 of 55

 JOIN HumanResources.Department
 ON EmpsByDept.DepartmentID = Department.DepartmentID
 JOIN Person.Person
 ON EmpsByDept.BusinessEntityID = Person.BusinessEntityID
 ORDER BY Name, EmployeeRand;

Figure 10. Applying ROW_NUMBER to a randomly generated field lets you randomly order each group.

Another use for ROW_NUMBER is paging records, as you might for a website. You can use
ROW_NUMBER to number the records in a CTE and then return only the rows in the range
for the specified page.

DENSE_RANK is useful when you want to number distinct values for the ordering criteria.
Suppose you want to get a list of the current job titles in each department and number
them alphabetically. You only want to list each job title once, so this calls for SELECT
DISTINCT. Your first attempt might be the query in Listing 19. As the partial results in
Figure 11 indicate, it doesn’t work; once a row number is added, each row is different, so
DISTINCT doesn’t remove any records.

Listing 19. ROW_NUMBER and DISTINCT don’t mix, because the unique values returned by ROW_NUMBER
make rows that should be the same different from each other.

SELECT DISTINCT Name, JobTitle,
 ROW_NUMBER() OVER
 (PARTITION BY Department.DepartmentID ORDER BY JobTitle) AS JobNum
 FROM [HumanResources].[EmployeeDepartmentHistory]
 JOIN [HumanResources].[Department]
 ON EmployeeDepartmentHistory.DepartmentID = Department.DepartmentID
 JOIN [HumanResources].[Employee]
 ON EmployeeDepartmentHistory.BusinessEntityID = Employee.BusinessEntityID
 WHERE EndDate IS null;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 21 of 55

Figure 11. When you use ROW_NUMBER with SELECT DISTINCT, rows that should be the same are different.

The solution is to use DENSE_RANK instead, as in Listing 20 (NumberedJobTitles.SQL in
the materials for this session). Since rows that otherwise match are given the same value
by DENSE_RANK, they can then be removed by DISTINCT. Figure 12 shows partial results;
as you can see, each job title is listed only once for each department.

Listing 20. DENSE_RANK assigns the same value to matching rows, which allows DISTINCT to remove
duplicates.

SELECT DISTINCT Name, JobTitle,
 DENSE_RANK() OVER
 (PARTITION BY Department.DepartmentID ORDER BY JobTitle) AS JobSerial
 FROM [HumanResources].[EmployeeDepartmentHistory]
 JOIN [HumanResources].[Department]
 ON EmployeeDepartmentHistory.DepartmentID = Department.DepartmentID
 JOIN [HumanResources].[Employee]
 ON EmployeeDepartmentHistory.BusinessEntityID = Employee.BusinessEntityID
 WHERE EndDate IS null;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 22 of 55

Figure 12. The JobSerial field, created with DENSE_RANK, numbers each distinct job in each department.

Dividing into percentiles

The final function in the Ranking group, NTILE, divides the records in each partition as
evenly as possible into a specified number of groups. The function takes a single parameter
that indicates the number of groups to create. For example, the query in Listing 21
(SalesQuartiles.SQL in the materials for this session) computes the total sales for each
salesperson by year, and then divides each year’s sales into four groups (quartiles) from
highest to lowest. Figure 13 shows partial results; as you can see, when the number of
records in the partition can’t be divided evenly into the specified number of groups, earlier
groups get an extra record.

Listing 21. The NTILE function divides each partition into a specified number of groups.

WITH csrAnnualSales (SalesPersonID, OrderYear, TotalSales)
AS
(SELECT SalesPersonID, YEAR(OrderDate), SUM(SubTotal) AS TotalSales
 FROM [Sales].[SalesOrderHeader]
 WHERE SalesPersonID IS NOT NULL
 GROUP BY SalesPersonID, YEAR(OrderDate))

SELECT SalesPersonID, OrderYear, TotalSales,
 NTILE(4) OVER (PARTITION BY OrderYear ORDER BY TotalSales DESC) AS Quartile
 FROM csrAnnualSales

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 23 of 55

Figure 13. NTILE makes the groups as even as possible. Here, there are 10 records for 2011, so groups 1 and
2 have 3 records each, while groups 3 and 4 have 2 apiece.

If you change the parameter to NTILE() to 5 (as in Listing 22), you get quintiles instead of
quartiles, as in Figure 14.

Listing 22. The parameter to NTILE() determines how many groups the records in each partition are divided
into.

 NTILE(5) OVER (PARTITION BY OrderYear ORDER BY TotalSales DESC) AS Quintile

Figure 14. Here, 5 was passed to NTILE(), so there are five groups for each year. As before, the group sizes
are as even as possible.

Later in this paper (see “Searching by percentile”), we’ll look at functions that let you ask
where the diving point is between various percentiles.

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 24 of 55

Aggregate functions
The aggregate functions are usually used in conjunction with GROUP BY to compute things
like total sales for each salesperson each year, or the number of days each student has been
absent each semester. At first glance, it would appear that using aggregate functions with
OVER would do the same thing, but there are some important differences.

First, using OVER, you can aggregate on different groups within a single query. For
example, the query in Listing 23 computes the yearly, monthly and daily number sold for
each product; Figure 15 shows a portion of the results. The results show the other
significant difference between aggregating by GROUP BY and aggregating by OVER. With
GROUP BY, you end up with a single record for each group. With OVER, you get whatever
records the JOIN and WHERE clauses give you, but they contain aggregated results.

Listing 23. Combine OVER with the aggregate functions to aggregate by different groups in a single query.

SELECT OrderDate, ProductID,
 SUM(SOD.OrderQty) OVER
 (PARTITION BY SOD.ProductID, YEAR(OrderDate)) AS Yearly,
 SUM(SOD.OrderQty) OVER
 (PARTITION BY SOD.ProductID, YEAR(OrderDate), MONTH(OrderDate)) AS Monthly,
 SUM(SOD.OrderQty) OVER (PARTITION BY SOD.ProductID, OrderDate) AS Daily
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 ORDER BY ProductID, OrderDate;

Figure 15. When you use OVER for aggregation, you get all the records you’d get without it.

In this example, if you want to see just one record for each date, add DISTINCT to the query,
as in Listing 24 (included in the materials for this session as SalesByYearMonthDay.SQL).
Figure 16 shows partial results.

Listing 24. Adding DISTINCT to the query gives us one record per date, but still includes yearly, monthly and
daily totals.

SELECT DISTINCT Orderdate, ProductID,

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 25 of 55

 SUM(SOD.OrderQty) OVER
 (PARTITION BY SOD.ProductID, YEAR(OrderDate)) AS Yearly,
 SUM(SOD.OrderQty) OVER
 (PARTITION BY SOD.ProductID, YEAR(OrderDate), MONTH(OrderDate)) AS Monthly,
 SUM(SOD.OrderQty) OVER (PARTITION BY SOD.ProductID, OrderDate) AS Daily
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 ORDER BY ProductID, OrderDate

Figure 16. The query in Listing 24 results in one record per date, each holding yearly, monthly and daily
totals.

Computing percentages

You can use OVER to compute what percent of a total a particular record represents.
Listing 25 builds on the previous example to indicate what percent of annual and monthly
sales for the product a given day’s sales represent. The number sold for the day is divided
by the number sold in the month or year; that value is then multiplied by 100 and cast as a
decimal to show the percentage. Figure 17 shows partial results. The query is included in
the materials for this session as SalesByYearMonthDayWithPcts.SQL.

Listing 25. In this query, OVER is used with SUM() to figure out what percent of a product’s monthly and
yearly sales came on a particular day.

SELECT DISTINCT Orderdate, ProductID,
 SUM(SOD.OrderQty) OVER
 (PARTITION BY SOD.ProductID, YEAR(OrderDate)) AS Yearly,
 SUM(SOD.OrderQty) OVER
 (PARTITION BY SOD.ProductID, YEAR(OrderDate), MONTH(OrderDate)) AS Monthly,
 SUM(SOD.OrderQty) OVER (PARTITION BY SOD.ProductID, OrderDate) AS Daily,
 CAST(1. * SUM(OrderQty) OVER (PARTITION BY SOD.ProductID, OrderDate)
 / SUM(SOD.OrderQty) OVER (PARTITION BY SOD.ProductID, YEAR(OrderDate))
 * 100 AS decimal(5,2)) AS PctOfYear,
 CAST(1. * SUM(OrderQty) OVER (PARTITION BY SOD.ProductID, OrderDate)
 / SUM(SOD.OrderQty) OVER
 (PARTITION BY SOD.ProductID, YEAR(OrderDate), Month(OrderDate))
 * 100 AS decimal(5,2)) AS PctOfMonth

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 26 of 55

 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 ORDER BY OrderDate, ProductID;

Figure 17. You can use OVER to compute what percent of a group total a particular value or subset
represents. Here, the day’s sales are computed as a percentage of the annual and monthly sales for the
product.

Counting groups

Use OVER with COUNT to put the size of a group into the records in the group. For example,
suppose you’re preparing a staff directory to be sorted alphabetically with a break after the
employees beginning with each initial letter. In order to have a good layout, you might want
to know how many staff members begin with a given letter. The query in Listing 26
(CountByInitial.SQL in the materials for this session) gives you what you need; Figure 18
shows partial results.

Listing 26. By partitioning by the first letter of the last name, COUNT tells how many records begin with the
same letter.

SELECT LEFT(LastName,1) AS Initial, LastName, FirstName,
 COUNT(*) OVER (PARTITION BY LEFT(LastName,1)) AS CountByInitial
 FROM Person.Person
 JOIN HumanResources.Employee
 ON Person.BusinessEntityID = Employee.BusinessEntityID
 ORDER BY LastName, FirstName;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 27 of 55

Figure 18. The CountByInitial column indicates how many names begin with the same letter as the current
record. Having that value can be useful for layout.

Running totals, running counts and moving averages

Although I’m working with SQL Server 2014, you can use OVER with aggregate functions all
the way back to SQL Server 2005. However, until SQL Server 2012, you couldn’t include an
ORDER clause with OVER and an aggregate function; OVER with aggregate functions was
restricted to PARTITION.

The ability to include ORDER BY with OVER and aggregate functions lets you compute
running totals, running counts and what are called moving averages. When ORDER BY is
included, the specified aggregate is computed for all records in the group up to and
including the current record. Listing 27 (included in the materials for this session as
RunningSalesByCustomer.SQL) demonstrates; it computes daily, monthly and yearly sales
by customer and includes running totals for the monthly and yearly sales. Partial results
are shown in Figure 19; look at the rows for customer 11019 to see the monthly running
total change for a customer.

Listing 27. You can add ORDER BY to an OVER clause using an aggregate function to get a running total or
moving average.

SELECT DISTINCT CustomerID, OrderDate,
 SUM(SubTotal) OVER
 (PARTITION BY CustomerID, YEAR(OrderDate)) AS Yearly,
 SUM(SubTotal) OVER
 (PARTITION BY CustomerID, YEAR(OrderDate), MONTH(OrderDate)) AS Monthly,
 SUM(SubTotal) OVER
 (PARTITION BY CustomerID, OrderDate) AS Daily,
 SUM(SubTotal) OVER
 (PARTITION BY CustomerID, YEAR(OrderDate) ORDER BY OrderDate)
 AS YearlyRunning,
 SUM(SubTotal) OVER
 (PARTITION BY CustomerID, YEAR(OrderDate), MONTH(OrderDate)
 ORDER BY OrderDate) AS MonthlyRunning

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 28 of 55

 FROM Sales.SalesOrderHeader SOH
 ORDER BY CustomerID, OrderDate;

Figure 19. Include ORDER BY when using OVER with SUM() to get a running total.

Running totals are probably the easiest of this type of calculation to understand, but you
can do the same thing with most of the aggregate functions. When you use ORDER BY with
COUNT, you get a running count of records. The query in Listing 28 (included in the
session materials as RunningOrderCount.SQL) shows the total number of orders placed in a
year and the running total through the year; Figure 20 shows partial results. As with SUM,
when you use only PARTITION, you get the count for the whole partition. When you add
ORDER BY, you get a running count that changes on each value of the ordering expression
(OrderDate, in the example).

Listing 28. Use COUNT with ORDER BY to get a running count.

SELECT DISTINCT OrderDate, YEAR(OrderDate) AS OrderYear,
 COUNT(SalesOrderNumber) OVER (PARTITION BY YEAR(OrderDate)) AS OrdersThisYear,
 COUNT(SalesOrderNumber) OVER (PARTITION BY YEAR(OrderDate) ORDER BY OrderDate)
 AS RunningOrdersThisYear
 FROM [Sales].[SalesOrderHeader]
 ORDER BY OrderDate

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 29 of 55

Figure 20. Using COUNT with OVER lets you compute counts and running counts by partition.

When you apply ORDER BY to AVG, you get a moving average, that is, the average of all the
records in the partition up to this point. The last record in the group will show the average
for the whole group. (This type of moving average is called a cumulative moving average.)
Listing 29 (included in the materials for this session as SalesWithMovingAverage.SQL)
demonstrates by computing the moving average of sales for a customer within a year.
Figure 21 shows partial results.

Listing 29. Using AVERAGE with OVER and an ORDER BY clause gives moving averages, the average of the
records in the group up to and including the current record.

SELECT CustomerID, OrderDate,
 SUM(Subtotal) OVER
 (PARTITION BY CustomerID, YEAR(OrderDate)) AS Yearly,
 SUM(Subtotal) OVER
 (PARTITION BY CustomerID, YEAR(OrderDate), MONTH(OrderDate)) AS Monthly,
 AVG(Subtotal) OVER
 (PARTITION BY CustomerID, YEAR(OrderDate) ORDER BY OrderDate) AS RunningAvg
 FROM Sales.SalesOrderHeader
 ORDER BY CustomerID, OrderDate;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 30 of 55

Figure 21. The last column here shows the moving average of sales for a customer within a year. Look at the
last record for each customer for the year to see the overall average for the year.

Similarly, when you use ORDER BY with MIN and MAX, you get the minimum or maximum
value in the group to this point. The query in Listing 30 shows the minimum and maximum
quantity in a single order to date for each product. Figure 22 shows partial results. The
query is included in the materials for this session as
SalesByYearMonthDayWithMinMax.SQL.

Listing 30. Applying OVER with ORDER BY to MIN() and MAX() lets you compute the minimum and
maximum so far.

SELECT DISTINCT OrderDate, ProductID,
 SUM(SOD.OrderQty) OVER
 (PARTITION BY SOD.ProductID, YEAR(OrderDate)) AS Yearly,
 SUM(SOD.OrderQty) OVER
 (PARTITION BY SOD.ProductID, YEAR(OrderDate), MONTH(OrderDate)) AS Monthly,
 SUM(SOD.OrderQty) OVER
 (PARTITION BY SOD.ProductID, OrderDate) AS Daily,
 MIN(OrderQty) OVER (PARTITION BY ProductID ORDER BY OrderDate) as MinOrder,
 MAX(OrderQty) OVER (PARTITION BY ProductID ORDER BY OrderDate) as MaxOrder
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 ORDER BY ProductID, OrderDate;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 31 of 55

Figure 22. The last two columns show running minimums and maximums for the quantity of a product in an
individual order.

Aggregating subsets within partitions

SQL Server 2012 also introduced another way of narrowing down which records are
aggregated. The ROWS and RANGE clauses let you specify that a calculation is applied only
to some records within a partition. Let’s look at an example.

Suppose you want to compute yearly orders for each product as well as a two-year moving
total. That is, each record in the result should show you sales for a product in a given year,
plus the sales for that product across the year you’re looking at and the prior year. Your
initial reaction may be that you’d need a loop of some sort or a self-join to compute the
two–year (or three-year or five-year totals) after getting yearly totals, but OVER with the
ROWS clause makes this fairly easy. Listing 31 (SalesByYearWithTwoYearTotal.SQL in the
materials for this session) shows the query; Figure 23 shows partial results. The query
uses a CTE to compute the number of items sold each year for each product. Then, the
ROWS clause in the fourth field in the main query indicates that the field TwoYear should
be computed as the sum of NumSold for the current record and the preceding record
within the partition. Note that for the first row of each product, Yearly and TwoYear are the
same.

Listing 31. The ROWS clause lets you apply a function to a subset of a partition.

WITH csrYearlySales (OrderYear, ProductID, NumSold)
AS
(SELECT YEAR(OrderDate) AS OrderYear, ProductID, SUM(OrderQty) AS NumSold
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 GROUP BY YEAR(OrderDate), ProductID)

SELECT OrderYear, ProductID, NumSold AS Yearly,

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 32 of 55

 SUM(NumSold) OVER (
 PARTITION BY ProductID ORDER BY OrderYear
 ROWS BETWEEN 1 PRECEDING AND CURRENT ROW) AS TwoYear
 FROM csrYearlySales
 ORDER BY ProductID, OrderYear;

Figure 23. The TwoYear column here is computed using the ROWS clause.

As the example demonstrates, the ROWS clause lets you specify a number of rows near the
current row. In addition to the PRECEDING and CURRENT ROW items shown, you can also
specify FOLLOWING. For example, to have three-year totals including the year before and
the year after the current year, you’d specify ROW BETWEEN 1 PRECEDING and 1
FOLLOWING.

The documentation refers to the group of rows as a window frame or just frame. You can
specify UNBOUNDED PRECEDING as the start point to indicate that the frame begins with
the first row of the partition, or UNBOUNDED FOLLOWING as the end point to say that the
frame ends with the last row of the partition. Also, note that you can specify a frame where
all the rows are before the current row or all the rows are after the current row. That is,
either PRECEDING or FOLLOWING can be used for either of the start and end points of the
window. For example, in the product orders query, you might specify ROW BETWEEN 1
FOLLOWING and 2 FOLLOWING to compute a total for the next two years, not including the
current year. It’s easy to see why someone might want to use ROW BETWEEN 3
PRECEDING and 1 PRECEDING to compute, say, the average sales of a product over the last
three years (or months) for comparison to the sales for the current year (or month).

It’s important to realize that ROWS is unaware of the data in other fields of the specified
rows. It simply uses rows within the partition in the way you specify. For example, you
might think that you could compute the number of each product sold by date and include
the total sales for the week with that date in the middle with the query in Listing 32
(included in the materials for this session as ProductSalesWithWeekly-WRONG.SQL),
specifying 3 rows before and 3 rows after the current row. However, as the partial results

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 33 of 55

in Figure 24 show, the WeekSales column is wrong; it doesn’t notice that some dates are
missing because the product wasn’t sold every day.

Listing 32. This attempt to calculate daily and weekly sales by product is flawed. ROWS simply counts
records forward and backward from the current record without paying any attention to their contents.

WITH csrSalesByProduct (ProductID, OrderDate, NumSold)
AS
(SELECT ProductID, OrderDate, SUM(OrderQty)
 FROM [Sales].[SalesOrderHeader] SOH
 JOIN [Sales].[SalesOrderDetail] SOD
 ON SOH.SalesOrderID = SOD.SalesOrderDetailID
 GROUP BY ProductID, OrderDate)

 SELECT OrderDate, ProductID, NumSold AS TodaysSales,
 SUM(NumSold) OVER (
 PARTITION BY ProductID ORDER BY ORDERDATE
 ROWS BETWEEN 3 PRECEDING AND 3 FOLLOWING) AS WeekSales
 FROM csrSalesByProduct
 ORDER BY ProductID, OrderDate;

Figure 24. It’s easy to misuse ROWS by assuming that it takes data values into consideration. Here, the
WeekSales column is wrong, containing the units of the product sold in seven consecutive records, whether
or not those records represent consecutive days.

On the other hand, the RANGE keyword lets you specify rows based on value rather than
position. You can’t specify a number at either end with RANGE, though. You can start with
CURRENT ROW or UNBOUNDED PRECEDING and end with CURRENT ROW or
UNBOUNDED FOLLOWING.

You can also specify RANGE CURRENT ROW, which says to apply the function to all records
in the partition that have the same ORDER BY value as the current record. This offers a way
to compute an aggregate while still looking at individual records, as in Listing 33, where
we list each order, but include the daily sales total for the salesperson. Partial results are

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 34 of 55

shown in Figure 25. The query is included in the materials for this session as
SalesWithDailyTotal.SQL.

Listing 33. This query uses RANGE CURRENT ROW to compute the daily total for each order’s salesperson.

SELECT Orderdate, SalesPersonID, SubTotal,
 SUM(SubTotal) OVER
 (PARTITION BY SalesPersonID ORDER BY OrderDate
 RANGE CURRENT ROW) AS SPDayTotal
 FROM Sales.SalesOrderHeader SOH
 WHERE SalesPersonID IS NOT NULL
 ORDER BY SalesPersonID, OrderDate;

Figure 25. The last column here shows the daily total for the salesperson, using RANGE CURRENT ROW.

RANGE doesn’t let you narrow down to a group of specific values, so you can’t ask for a
function to be applied to, say, all records with the same value as this row and the one
immediately following, or with the same value as this row and the next possible value. To
do calculations like that, you have to figure out clever ways to partition and order your
data.

You can, though, ask for the function to apply to records from this row’s value to the end,
giving you a “reverse running total.” The query in Listing 34 (included in the materials for
this session as SalesWithReverseRunningTotalByDay.SQL) computes such a reverse
running total of sales for the salesperson. Figure 26 shows partial results. Note that it’s still
a daily computation because RANGE uses the value of the ORDER BY expression to choose
records; for example, the third and fourth rows shown have the same value because they’re
for the same day.

Listing 34. The RANGE specified for the last column produces a reverse running total, where the first row for
each salesperson contains the total for that salesperson, and each subsequent row shows the total only from
that date to the end.

SELECT Orderdate, SalesPersonID, SubTotal,
 SUM(SubTotal) OVER
 (PARTITION BY SalesPersonID ORDER BY OrderDate
 RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS ReverseRunningTotal

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 35 of 55

 FROM Sales.SalesOrderHeader SOH
 WHERE SalesPersonID IS NOT NULL
 ORDER BY SalesPersonID, OrderDate;

Figure 26. The reverse running total here declines each day for the salesperson.

To compute a reverse running total that declines with each record rather than each day,
change RANGE to ROWS, as in Listing 35 (included in the materials for this session as
SalesWithReverseRunningTotal.SQL). Partial results are shown in Figure 27.

Listing 35. Using ROWS rather than RANGE results in a complete reverse running total that declines with
each record.

SELECT Orderdate, SalesPersonID, SubTotal,
 SUM(SubTotal) OVER
 (PARTITION BY SalesPersonID ORDER BY OrderDate
 ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) AS ReverseRunningTotal
 FROM Sales.SalesOrderHeader SOH
 WHERE SalesPersonID IS NOT NULL
 ORDER BY SalesPersonID, OrderDate;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 36 of 55

Figure 27. Use ROWS BETWEEN CURRENT ROW and UNBOUNDED FOLLOWING to compute reverse running
totals.

While these examples of ROWS and RANGE use the SUM function, they actually can be
applied to any of the functions you can use with OVER, so you can find, for example, the
largest sale or the average sale for each salesperson on a daily basis. (You might then use
that to compute the ratio of a given sale to the largest or average sale for that day.)

I should also note that although many of these examples order by date, you can order by
pretty much anything. My examples use ORDER BY OrderDate or one of its components
(month, year) simply because it’s easy to think of business examples where we want to
calculate things based on the date or the month or the year.

Analytical functions
The final group of functions that can be used with OVER are analytical functions; they were
added in SQL Server 2012. They can be broken into two broad subsets. The first gives you
access to values from other records in the group: FIRST_VALUE and LAST_VALUE, as their
names suggest, let you grab values from the first or last record in a partition; LEAD and LAG
provide access to records following or preceding the current record.

The second subset, containing CUME_DIST, PERCENTILE_CONT, PERCENTILE_DISC, and
PERCENT_RANK, looks at percentiles and distributions.

Comparing across records

The functions that give you access to different records in the partition allow you to put data
from multiple records into a single result record without doing a self-join. Let’s start with
LEAD and LAG, which are the easiest to understand.

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 37 of 55

Suppose you’d like to see the number of units sold for each product by year, along with the
prior year’s sales and the next year’s sales. That is, you want each record to show three
years’ worth of sales for a single product.

In VFP, you need to use three copies of the table (or cursor) that contains the totals to do
this, as in Listing 36 (included in the materials for this session as
ThreeYearProductSales.PRG). The first query computes the yearly totals for each product,
and puts them into a cursor called csrYearlySales. Then, the second query joins three
instances of csrYearlySales, matching records on ProductID and then looking one year back
and one year forward, respectively, in the second part of each join condition. As the partial
results in Figure 28 show, you get the null value for the previous year in the first record for
each product and for the following year in the last record for each product. (Since the
Northwind database has data for only three years, you get exactly three rows per product
here, but if there were data covering a longer span of years, there’d be more rows for each
product.)

Listing 36. To include data from multiple records in the same table into a single record in the result in VFP,
you have to use a self-join, including the source table once for each record you want to access.

SELECT YEAR(OrderDate) AS OrderYear, ProductID, SUM(Quantity) AS NumSold ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = OrderDetails.OrderID ;
 GROUP BY 1, 2 ;
 ORDER BY 2, 1 ;
 INTO CURSOR csrYearlySales

SELECT Curr.ProductID, Curr.OrderYear, ;
 Prev.NumSold AS PrevYear, Curr.NumSold AS CurrYear, Foll.NumSold AS FollYear ;
 FROM csrYearlySales Curr ;
 LEFT JOIN csrYearlySales Prev ;
 ON Curr.ProductID = Prev.ProductID ;
 AND Curr.OrderYear = Prev.OrderYear + 1;
 LEFT JOIN csrYearlySales Foll ;
 ON Curr.ProductID = Foll.ProductID ;
 AND Curr.OrderYear = Foll.OrderYear - 1;
 ORDER BY 1, 2 ;
 INTO CURSOR csrThreeYears

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 38 of 55

Figure 28. In VFP, to get totals for three different years into the same row of the result, you join three
instances of the table that contains the data.

You can solve the problem the same way in T-SQL (though you’d probably use a CTE rather
than a separate query to compute the yearly totals). But the LAG and LEAD functions
provide a better, more flexible solution.

In its simplest form, LEAD lets you include data from the next record in the partition in the
results for the current record. Similarly, the simplest form of LAG pulls data from the
preceding record into the result for the current record. For example, the query in Listing
37 (SalesByYearWithPrevAndFoll.SQL in the materials for this session) shows the total
number sold for each product by year, and includes the number sold for the preceding year
and the following year. The CTE computes the total for each product for each year, and then
the main query pulls the total for the preceding record (LAG), the current record, and the
following record (LEAD). LAG and LEAD are both partitioned by ProductID, so we look only
at records for the same product. Figure 29 shows partial results; note that, just as in the
VFP version, the PrevYear column is null for the first record for each product, and the
FollYear column is null for the last record for each product.

Listing 37. LEAD and LAG let you pull data from other records in the partition into the results for a record.

WITH csrYearlySales (OrderYear, ProductID, NumSold)
AS
(SELECT YEAR(OrderDate) AS OrderYear, ProductID, SUM(OrderQty) AS NumSold
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 GROUP BY YEAR(OrderDate), ProductID)

SELECT OrderYear, ProductID,
 LAG(NumSold) OVER (PARTITION BY ProductID ORDER BY OrderYear) AS PrevYear,
 NumSold AS CurrYear,
 LEAD(NumSold) OVER (PARTITION BY ProductID ORDER BY OrderYear) AS FollYear

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 39 of 55

 FROM csrYearlySales
 ORDER BY ProductID, OrderYear;

Figure 29. With LAG and LEAD, you can include data from other records in the same partition.

You can actually pass an expression to LAG and LEAD, not just a single field name, so you
can do a calculation based on data from a preceding or following record. In addition, the
two functions have two optional parameters. The second parameter, called Offset in the
documentation, lets you specify which record to use. It’s an offset from the current position,
and defaults to 1. So when you omit the parameter, you get the record immediately
preceding or immediately following the current record. But you can jump two back or six
forward, or whatever. The query in Listing 38 (included in the materials for this session as
FiveYearProductSales.SQL) shows five years’ worth of totals for each product in each
record, putting the year the record represents in the middle. As the partial result in Figure
30 shows, we don’t actually have five years’ sales data, so every record contains some nulls.

Listing 38. You can specify records more than one record away from the current record using the optional
second parameter to LAG and LEAD.

WITH csrYearlySales (OrderYear, ProductID, NumSold)
AS
(SELECT YEAR(OrderDate) AS OrderYear, ProductID, SUM(OrderQty) AS NumSold
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 GROUP BY YEAR(OrderDate), ProductID)

SELECT OrderYear, ProductID,
 LAG(NumSold, 2) OVER (PARTITION BY ProductID ORDER BY OrderYear) AS Year1,
 LAG(NumSold) OVER (PARTITION BY ProductID ORDER BY OrderYear) AS Year2,
 NumSold AS Year3,
 LEAD(NumSold) OVER (PARTITION BY ProductID ORDER BY OrderYear) AS Year4,
 LEAD(NumSold,2) OVER (PARTITION BY ProductID ORDER BY OrderYear) AS Year5
 FROM csrYearlySales
 ORDER BY ProductID, OrderYear;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 40 of 55

Figure 30. Using the Offset parameter of LEAD and LAG, you can reach forward and back an arbitrary
number of records.

While you can get analogous results in VFP, you’d have to use two more self-joins to
csrYearlySales with the appropriate join conditions.

The third parameter to LAG and LEAD lets you specify a default value to use when the
computed value is null. For example, if you’d prefer to see zeroes rather than nulls where
there’s no data, you can specify a third parameter of 0 for each LAG and LEAD in Listing 38.

It’s important to keep in mind that, like ROWS, LAG and LEAD are about position, not range.
LAG returns the value of the expression for the preceding record in the partition, even if
that record doesn’t represent the immediately preceding value of the ordering expression.
In the examples above, if some product hadn’t been sold during a particular year (perhaps
the materials to produce it weren’t available), the PrevYear and FollYear columns wouldn’t
necessarily represent the immediately preceding and following year. That’s easier to see if
you consider showing sales for three days at a time, as in Listing 39 (included in the
materials for this session as SalesByDayWithPrevAndFoll-WRONG.SQL), which is the same
query as in Listing 37, except that it computes daily sales. Partial results are shown in
Figure 31, where it’s clear that PrevDate and FollDate show sales for the first previous day
and the next day on which the product was sold, not the previous day and next day.

Listing 39. When looking at daily sales (rather than yearly), the real meaning of LAG and LEAD becomes
more apparent.

WITH csrDailySales (OrderDate, ProductID, NumSold)
AS
(SELECT OrderDate , ProductID, SUM(OrderQty) AS NumSold
 from Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON soh.SalesOrderID = sod.SalesOrderID
 group by OrderDate, ProductID)

SELECT OrderDate, ProductID,
 LAG(NumSold) OVER (PARTITION BY ProductID ORDER BY OrderDate) AS PrevDate,

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 41 of 55

 NumSold AS CurrYear,
 LEAD(NumSold) OVER (PARTITION BY ProductID ORDER BY OrderDate) AS FollDate
 FROM csrDailySales
 ORDER BY ProductID, OrderDate

Figure 31. These results make it clear that LAG and LEAD operate based on position, not data.

Looking at first and last records

The second pair of functions that give you access to other records in the same partition is
FIRST_VALUE and LAST_VALUE. Though they sound like they’d be exact analogues of each
other, they’re not. FIRST_VALUE is simpler, so we’ll look at it first. Like LAG and LEAD,
these functions let you look at multiple records simultaneously without a self-join, but
writing such code without these functions is a lot more complex.

FIRST_VALUE accepts an expression and returns the value of that expression for the first
record in the partition, according to the specified order. For example, the query in Listing
40 (PayHistoryWithOrig.SQL in the materials for this session) shows each employee’s pay
history in chronological order. Each record shows one pay rate and the date it took effect,
as well as the original pay rate for this employee. We partition the data on
BusinessEntityID, which is the primary key for Person. In each partition, records are
ordered by the date of the pay change, so the original pay rate appears first. Look at the last
three rows in Figure 32 to see an employee with multiple records.

Listing 40. FIRST_VALUE lets you include data from the first record in the partition with each record in the
result.

SELECT FirstName, LastName, Rate, RateChangeDate,
 FIRST_VALUE(Rate) OVER
 (PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate) AS OrigRate
 FROM Person.Person
 JOIN [HumanResources].[EmployeePayHistory] EPH
 ON Person.BusinessEntityID = EPH.BusinessEntityID
 ORDER BY LastName, FirstName, RateChangeDate;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 42 of 55

Figure 32. Here, each employee pay rate record is shown along with the original pay rate for the employee.

While the example in Listing 40 doesn’t seem terribly useful, a small extension of the idea
does. The query in Listing 41 (PayHistoryWithPctInc.SQL in the materials for this session)
computes the percentage increase from the original pay rate and includes only those
records that represent changes in pay in the result. (The query also includes the date for
the original pay rate.) The CTE here is required in order to be able to use the computed
increase in the WHERE clause. Figure 33 shows partial results; for example, David Bradley
started in December, 2012 at $24/hour. He got a raise of nearly 20% in July, 2009 and an
additional raise at the end of April, 2012, making his pay rate more than 56% higher than
when he started.

Listing 41. You can use the analytical functions as part of a larger expression. Here, the original rate found by
FIRST_VALUE divides the new rate to find the percent increase.

WITH csrPayHikes (FirstName, LastName, Rate, RateChangeDate, OrigRate, OrigDate, Inc)
AS
(SELECT FirstName, LastName, Rate, RateChangeDate,
 FIRST_VALUE(Rate) OVER
 (PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate),
 FIRST_VALUE(RateChangeDate) OVER
 (PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate),
 CAST((100.00 * Rate/FIRST_VALUE(Rate) OVER
 (PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate)-100)
 AS DECIMAL(5,2))
 FROM Person.Person
 JOIN [HumanResources].[EmployeePayHistory] EPH
 ON Person.BusinessEntityID = EPH.BusinessEntityID)

SELECT *
 FROM csrPayHikes
 WHERE Inc <> 0
 ORDER BY LastName, FirstName, RateChangeDate;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 43 of 55

Figure 33. The Inc column uses FIRST_VALUE in a computation to figure out how much of a cumulative raise
each employee has received.

You’d expect LAST_VALUE to behave the same way, except returning the last value in the
partition for the specified expression. However, by default, the function returns the
“running last value,” that is, the one you’re up to. For example, suppose we replace
FIRST_VALUE with LAST_VALUE in the query in Listing 40, so we have the query shown in
Listing 42 (included in the materials for this session as PayHistoryWithLast.SQL). We get
results like those shown in Figure 34. The computed value for CurrRate is the same as the
Rate column, because LAST_VALUE looks at the partition only up to the current record.

Listing 42. By default, LAST_VALUE returns the last value of the expression up to the row we’re on, not the
last value in the partition.

SELECT FirstName, LastName, Rate, RateChangeDate,
 LAST_VALUE(Rate) OVER
 (PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate) AS CurrRate
 FROM Person.Person
 JOIN [HumanResources].[EmployeePayHistory] EPH
 ON Person.BusinessEntityID = EPH.BusinessEntityID
 ORDER BY LastName, FirstName, RateChangeDate;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 44 of 55

Figure 34. Because of the default behavior of LAST_VALUE, the CurrRate column here is always the same as
the Rate column.

The secret to getting the actual last value in the partition is to use the window frame
notation (described in “Aggregating subsets within partitions,” earlier in this paper). The
default frame is RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. To get
a value from the last record of the partition, we need RANGE BETWEEN UNBOUNDED
PRECEDING AND UNBOUNDED FOLLOWING. The query in Listing 43 (included in the
materials for this session as PayHistoryWithOrigAndCurr.SQL) shows the pay rate
represented by the particular record, the original pay rate and the current pay rate. Figure
35 shows partial results; the last three records in the figure demonstrate the correct
results for an employee with multiple pay rates.

Listing 43. Use the RANGE clause with LAST_VALUE to find the last value across the entire partition.

SELECT FirstName, LastName, Rate, RateChangeDate,
 FIRST_VALUE(Rate) OVER
 (PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate) AS OrigRate,
 LAST_VALUE(Rate) OVER
 (PARTITION BY EPH.BusinessEntityID ORDER BY RateChangeDate
 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS CurrRate
 FROM Person.Person
 JOIN [HumanResources].[EmployeePayHistory] EPH
 ON Person.BusinessEntityID = EPH.BusinessEntityID
 ORDER BY LastName, FirstName, RateChangeDate;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 45 of 55

Figure 35. When LAST_VALUE is applied together with RANGE UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING, you get the value from the last record in the partition.

As with FIRST_VALUE, you can use LAST_VALUE as part of a larger expression, so you could
compute, say, the percentage increase from the pay rate in the current record to the
current pay rate returned by LAST_VALUE.

These two functions let you work around a limitation of the MIN and MAX aggregate
functions. The issue is that MIN and MAX give you the minimum or maximum value for the
specified expression, but they don’t give you a way to reach into other fields of the record
that provides the minimum or maximum.

For example, you might want to compute the number of units sold for each product in each
year and include information about the best and worst years for that product. If all you
want to know is the number sold in the best and worst years for each product, you can do
that with a simple GROUP BY, as in Listing 44 (MinMaxProductsSold.SQL in the materials
for this session).

Listing 44. If all you want is to find a minimum or maximum value, you don’t need FIRST_VALUE or
LAST_VALUE.

WITH csrYearlySales (OrderYear, ProductID, NumSold)
AS

(SELECT YEAR(OrderDate) AS OrderYear, ProductID, SUM(OrderQty) AS NumSold
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 GROUP BY YEAR(OrderDate), ProductID)

SELECT ProductID, MIN(NumSold) AS MinSold, MAX(NumSold) AS MaxSold
 FROM csrYearlySales
 GROUP BY ProductID
 ORDER BY ProductID;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 46 of 55

But suppose you want to know which year was best and which was worst. You can’t just
add OrderYear to the field list; that will give you an error. Specifying MIN(OrderYear)
doesn’t give you the year for the minimum sold; it gives you the first year in the group. But
with FIRST_VALUE and LAST_VALUE, you can get exactly what you want, as in Listing 45
(included in the materials for this session as SalesByYearWithWorstAndBest.SQL). Figure
36 shows partial results.

Listing 45. FIRST_VALUE and LAST_VALUE solve the problem that MIN and MAX can’t give you the values of
other fields in the record that produced the minimum or maximum.

WITH csrYearlySales (OrderYear, ProductID, NumSold)
AS

(SELECT YEAR(OrderDate) AS OrderYear, ProductID, SUM(OrderQty) AS NumSold
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 GROUP BY YEAR(OrderDate), ProductID)

SELECT ProductID, OrderYear, NumSold,
 FIRST_VALUE(NumSold) OVER
 (PARTITION BY ProductID ORDER BY NumSold) AS MinSold,
 FIRST_VALUE(OrderYear) OVER
 (PARTITION BY ProductID ORDER BY NumSold) AS MinYear,
 LAST_VALUE(NumSold) OVER
 (PARTITION BY ProductID ORDER BY NumSold
 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS MaxSold,
 LAST_VALUE(OrderYear) OVER
 (PARTITION BY ProductID ORDER BY NumSold
 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS MaxYear
 FROM csrYearlySales
 ORDER BY ProductID, OrderYear;

Figure 36. These results show sales by product by year, along with the worst and best year for that product.

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 47 of 55

In addition, FIRST_VALUE and LAST_VALUE can answer questions more simply, that is,
with less code. Suppose you want to get a list of AdventureWorks employees, with their
current department, and their last previous department. Without these functions, you need
two CTEs to get the name of the previous department, so you can join it to the current data,
as in Listing 46 (EmployeeWithPriorDept-TwoCTE.SQL in the materials for this session).
The first CTE finds the latest date an employee’s assignment to another department ended.
The second CTE uses that date to find the appropriate record in
EmployeeDepartmentHistory and joins it to Department to get the name of the department.
Then, the main query joins that data with other employee data.

Listing 46. To find each employee’s previous department and join it to the current data, you can use a pair of
CTEs.

WITH LastXfer (BusinessEntityID, LastEndDate)
AS
(SELECT BusinessEntityID, MAX(EndDate)
 FROM HumanResources.EmployeeDepartmentHistory EDH
 WHERE EndDate IS NOT NULL
 GROUP BY BusinessEntityID),

PriorDept (BusinessEntityID, DeptName)
AS
(SELECT EDH.BusinessEntityID, Name
 FROM HumanResources.EmployeeDepartmentHistory EDH
 JOIN HumanResources.Department
 ON EDH.DepartmentID = Department.DepartmentID
 JOIN LastXfer
 ON EDH.BusinessEntityID = LastXfer.BusinessEntityID
 AND EDH.EndDate = LastXfer.LastEndDate
)

SELECT Person.BusinessEntityID, FirstName, LastName, Name AS DeptName,
 PriorDept.DeptName AS PriorDeptName
 FROM Person.Person
 JOIN HumanResources.EmployeeDepartmentHistory EDH
 ON Person.BusinessEntityID = EDH.BusinessEntityID
 AND EDH.EndDate IS NULL
 JOIN HumanResources.Department
 ON EDH.DepartmentID = Department.DepartmentID
 LEFT JOIN PriorDept
 ON Person.BusinessEntityID = PriorDept.BusinessEntityID;

Using LAST_VALUE, we can use a single CTE, as in Listing 47 (included in the materials for
this session as EmployeeWithPriorDept-LastValue.SQL). The CTE uses LAST_VALUE to get
the name of the last department an employee left. The CTE requires DISTINCT because it
provides one record for each previous assignment for each employee; DISTINCT reduces
that to one record. Figure 37 shows partial results.

Listing 47. With LAST_VALUE, you can get the name of the employee’s last prior department with a single
CTE.

WITH PriorDept (BusinessEntityID, DeptName)

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 48 of 55

AS
(SELECT DISTINCT BusinessEntityID,
 LAST_VALUE(Name) OVER
 (PARTITION BY BusinessEntityID ORDER BY EndDate
 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
 FROM HumanResources.EmployeeDepartmentHistory EDH
 JOIN HumanResources.Department
 ON EDH.DepartmentID = Department.DepartmentID
 WHERE EndDate IS NOT NULL)

SELECT Person.BusinessEntityID, FirstName, LastName, Name AS DeptName,
 PriorDept.DeptName AS PriorDeptName
 FROM Person.Person
 JOIN HumanResources.EmployeeDepartmentHistory EDH
 ON Person.BusinessEntityID = EDH.BusinessEntityID
 AND EDH.EndDate IS NULL
 JOIN HumanResources.Department
 ON EDH.DepartmentID = Department.DepartmentID
 LEFT JOIN PriorDept
 ON Person.BusinessEntityID = PriorDept.BusinessEntityID;

Figure 37. LAST_VALUE makes it easier to find the name of an employee’s last previous department.

Showing distribution of records

The analytical function group also offers ways to rank the records relatively. The
CUME_DIST() and PERCENT_RANK() functions both assign each record a value between 0
and 1 representing its position in the partition based on the specified order for the
partition. The two functions differ in whether any record is assigned 0; that difference in
the first record of the partition leads to different results throughout.

The easiest way to understand the difference between these functions, and between these
two and the RANK function described earlier in this paper, is to look at the results. The
query in Listing 48 (RankAndDistribution.SQL in the materials for this session) computes

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 49 of 55

sales by salesperson by year, and then applies a series of analytics to the data. Partial
results are shown in Figure 38.

Listing 48. T-SQL offers several ways to show the distribution of data.

WITH csrAnnualSales (SalesPersonID, OrderYear, TotalSales)
AS
(SELECT SalesPersonID, YEAR(OrderDate), SUM(SubTotal) AS TotalSales
 FROM [Sales].[SalesOrderHeader]
 WHERE SalesPersonID IS NOT NULL
 GROUP BY SalesPersonID, YEAR(OrderDate))

SELECT SalesPersonID, OrderYear, TotalSales,
 CUME_DIST() OVER (PARTITION BY OrderYear ORDER BY TotalSales) AS CumeDist,
 PERCENT_RANK() OVER (PARTITION BY OrderYear ORDER BY TotalSales) AS PctRank,
 RANK() OVER (PARTITION BY OrderYear ORDER BY TotalSales) AS Rank,
 COUNT(SalesPersonID) OVER
 (PARTITION BY OrderYear ORDER BY TotalSales
 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS GroupCount,
 CAST(1.00 * RANK() OVER
 (PARTITION BY OrderYear ORDER BY TotalSales) /
 COUNT(SalesPersonID) OVER
 (PARTITION BY OrderYear ORDER BY TotalSales
 RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING)
 AS decimal(5,2)) AS ComputedDist
 FROM csrAnnualSales;

Figure 38. CUME_DIST and PERCENT_RANK give similar but not identical results.

Consider the results for 2011. There are 10 records, each with a different value for
TotalSales. CUME_DIST divides them into ten evenly-spaced groups. PERCENT_RANK does
the same, but the first record has a rank of 0. The query also demonstrates that you can
actually compute CUME_DIST by dividing the RANK of a row by the number of rows in the
partition (that is COUNT applied to the same partition).

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 50 of 55

One thing this example doesn’t show is what happens when there are ties in the data. You
should get a hint, though, from the fact that I used RANK (rather than RECORD_NUMBER)
when computing the equivalent of CUME_DIST. Both CUME_DIST and PERCENT_RANK
assign the same result to records with the same sort value. An updated version of the query
in Listing 12 demonstrates. The query in Listing 49 (EmployeeRankByDeptWithDist.SQL in
the materials for this session) ranks employees in each department by how long they’ve
been working there. As you can see in the partial results in Figure 39, when multiple
employees have the same start date, those employees share the same result both for
CUME_DIST and for PERCENT_RANK.

Listing 49. Both CUME_DIST and PERCENT_RANK assign the same value to ties.

SELECT FirstName, LastName, StartDate, Department.Name,
 RANK() OVER
 (PARTITION BY Department.DepartmentID ORDER BY StartDate) AS EmployeeRank,
 CUME_DIST() OVER
 (PARTITION BY Department.DepartmentID ORDER BY StartDate) AS CumeDist,
 PERCENT_RANK() OVER
 (PARTITION BY Department.DepartmentID ORDER BY StartDate) AS PctRank
FROM HumanResources.Employee
 JOIN HumanResources.EmployeeDepartmentHistory EDH
 ON Employee.BusinessEntityID = EDH.BusinessEntityID
 JOIN HumanResources.Department
 ON EDH.DepartmentID = Department.DepartmentID
 JOIN Person.Person
 ON Employee.BusinessEntityID = Person.BusinessEntityID
 WHERE EndDate IS null

Figure 39. Records with the same value for the ordering expression are assigned the same result by both
CUME_DIST and PERCENT_RANK.

This query also helps to explain exactly what these two functions compute. CUME_DIST is
the fraction of records in the partition with the same value as or a lower value than the
current record for the ordering expression. So, there are 11 Sales employees who started

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 51 of 55

on or before 31-May-2011; that’s divided by 18 (the total number of employees in the Sales
department, which you can’t tell from this figure). That gives the result 0.61111 shown for
all nine employees who started that day.

The formula for PERCENT_RANK is much less obvious. It’s one less than rank divided by
one less than the group size, that is (RANK-1)/(COUNT-1). Subtracting one from the rank
ensures that PERCENT_RANK always begins with 0. The SQL Server documentation
describes this as the “relative rank of a row within a group of rows.”

You can also consider PERCENT_RANK as the percentile into which the record falls
(divided by 100). Though I was taught that you never have a 100th percentile, a little
research shows that some methods for computing percentile do, in fact, result in a 100th
percentile. Note though that, if there is a tie for the greatest value, then no record in that
partition has PERCENT_RANK = 1.

You’re likely to want to multiply both CUME_DIST and PERCENT_RANK by 100 to get the
familiar percentage/percentile values we’re used to dealing with.

One way you might use these functions is to eliminate outliers from a calculation. For
example, you might want to get a list of those products whose sales in a given year were in
the middle 50%, that is, between the 25th and 75th percentiles. Listing 50
(Middle50PctInSales.SQL in the materials for this session) shows how to do that using
PERCENT_RANK. It uses two CTEs. The first computes yearly total sales for each product.
The second uses PERCENT_RANK to rank the sales for each year. The main query then
simply keeps those records whose rank falls between 0.25 and 0.75, and adds some more
information about each product. Figure 40 shows partial results, ordered from lowest to
highest sales by year.

Listing 50. PERCENT_RANK makes it possible to keep only the middle range of values.

WITH csrProductSales (ProductID, nYear, TotalSales)
AS
(SELECT ProductID, YEAR(OrderDate), SUM(LineTotal)
 FROM [Sales].[SalesOrderHeader] SOH
 JOIN [Sales].[SalesOrderDetail] SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 GROUP BY ProductID, YEAR(OrderDate)),

csrRankedProductSales (ProductID, nYear, TotalSales, PctRank)
AS
(SELECT ProductID, nYear, TotalSales,
 PERCENT_RANK() OVER (PARTITION BY nYear ORDER BY TotalSales)
 FROM csrProductSales)

SELECT Product.ProductID, Name, ProductNumber, nYear, TotalSales
 FROM csrRankedProductSales
 JOIN Production.Product
 ON csrRankedProductSales.ProductID = Product.ProductID
 WHERE PctRank BETWEEN 0.25 and 0.75
 ORDER BY nYear, TotalSales;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 52 of 55

Figure 40. Only those products whose sales fell between the 25% and 75% percentile for the year are
included here.

The next section of this document shows another way to filter based on percentile
information.

Searching by percentile

The last two analytical functions, PERCENT_CONT and PERCENT_DISC, let you find the cut-
off value for a particular percentile. Each accepts a decimal value indicating which
percentile is desired; for example, specify .5 to return the median, that is, the value at the
50th percentile, and specify .99 to return the value at the 99th percentile.

The syntax for these functions is a little different than for any of the other functions you can
use with OVER. The syntax for PERCENTILE_DISC is shown in Listing 51; the syntax for
PERCENTILE_CONT is identical except, of course, for the function name.

Listing 51. The two percentile functions use a different syntax than the other functions that work with OVER.

PERCENTILE_DISC(number)
 WITHIN GROUP (ORDER BY order_by_expression [ASC | DESC])
 OVER ([PARTITION BY <partition_by_expr>])

As usual, the PARTITION BY clause lets you break the results up into groups and apply the
function separately to each group. While the PARTITION BY clause is optional here, if you
want to apply the function to the whole result set as one group, you still have to include the
OVER keyword; follow it with empty parentheses.

The WITHIN GROUP clause sets the order used to determine percentiles.

The expression you pass to the function must be a number between 0 and 1. (That’s
another difference from the other functions that work with OVER.)

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 53 of 55

The difference between the two functions is in whether they return only values in the data
(PERCENTILE_DISC—“DISC” stands for “discrete”) or can interpolate between values to
give a more accurate answer (PERCENTILE_CONT—“CONT” stands for “continuous”).

The query in Listing 52 (TenurePercentile.SQL in the materials for this session) shows the
number of people in each department, and their average tenure in the department in days
(that is, how many days they’ve been in that department). Then, it computes the 25th, 50th
and 75th percentiles for tenure in the department, using each of the two methods. Figure
41 shows partial results.

Listing 52. PERCENTILE_CONT and PERCENTILE_DISC return the value that represents a specified
percentile.

WITH csrTenure (DepartmentID, DeptName, BusinessEntityID, DaysInDept)
AS
(SELECT Department.DepartmentID, Department.Name AS DeptName,
 EDH.BusinessEntityID, DATEDIFF(DD,StartDate,GETDATE())
 FROM
 HumanResources.EmployeeDepartmentHistory EDH
 JOIN HumanResources.Department
 ON EDH.DepartmentID = Department.DepartmentID
 WHERE EndDate IS null)

SELECT DISTINCT DeptName,
 COUNT(BusinessEntityID) OVER (PARTITION BY DepartmentID) AS DeptSize,
 AVG(DaysInDept) OVER (PARTITION BY DepartmentID) AS AvgTenure,
 PERCENTILE_CONT(.25)
 WITHIN GROUP (ORDER BY DaysInDept) OVER (PARTITION BY DepartmentID)
 AS Cont25Pctile,
 PERCENTILE_CONT(.5)
 WITHIN GROUP (ORDER BY DaysInDept) OVER (PARTITION BY DepartmentID)
 AS ContMedian,
 PERCENTILE_CONT(.75)
 WITHIN GROUP (ORDER BY DaysInDept) OVER (PARTITION BY DepartmentID)
 AS Cont75Pctile,
 PERCENTILE_DISC(.25)
 WITHIN GROUP (ORDER BY DaysInDept) OVER (PARTITION BY DepartmentID)
 AS Disc25Pctile,
 PERCENTILE_DISC(.5)
 WITHIN GROUP (ORDER BY DaysInDept) OVER (PARTITION BY DepartmentID)
 AS DiscMedian,
 PERCENTILE_DISC(.75)
 WITHIN GROUP (ORDER BY DaysInDept) OVER (PARTITION BY DepartmentID)
 AS Disc75Pctile
 FROM csrTenure
 ORDER BY DeptName;

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 54 of 55

Figure 41. Because PERCENTILE_CONT interpolates, the values it returns may not be in the original data.
PERCENTILE_DISC always returns an actual data value. The difference is particularly striking in the data for
the Executive department, which has only two employees.

These functions also let you find all the records above or below a certain percentile. For
example, suppose you want a list of the customers in the top 10% of spending each month.
That is, for each month, find the 90th percentile of customer spending and get a list of the
customers who spent that much or more. There are three parts to the solution to this
problem. First, compute customer spending by month. Second, find the 90th percentile of
spending for each month. Finally, check the individual customer totals for each month
against the 90th percentile value for that month. Listing 53 (included in the materials for
this session as CustomersAbove90thPercentile.SQL) shows the code. The query reflects the
three tasks. The first CTE computes customer totals by month. The second CTE finds the
cutoff for the 90th percentile for each month, using the computed totals. Finally, the main
query joins the two CTE results, matching them by month and year, and keeps only those
where the customer’s total is at least the cutoff amount.

Listing 53. PERCENTILE_CONT lets us find customers whose purchases were in the 90th percentile or above
for each month.

WITH csrSalesByCustomer (CustomerID, nMonth, nYear, TotalSales)
AS
(SELECT CustomerID, MONTH(OrderDate), YEAR(OrderDate), SUM(SubTotal)
 FROM [Sales].[SalesOrderHeader]
 GROUP BY CustomerID, MONTH(OrderDate), Year(OrderDate)),

csrNinetiethPctile (nMonth, nYear, Cutoff)
AS
(SELECT DISTINCT nMonth, nYear,
 PERCENTILE_CONT(.9) WITHIN GROUP (ORDER BY TotalSales)
 OVER (PARTITION BY nMonth, nYear)
 FROM csrSalesByCustomer)

SELECT CustomerID, SBC.nMonth, SBC.nYear, SBC.TotalSales, NPtile. Cutoff
 FROM csrSalesByCustomer SBC
 JOIN csrNinetiethPctile NPtile

Going OVER and Above with SQL

Copyright 2015, Tamar E. Granor Page 55 of 55

 ON SBC.nMonth = NPtile.nMonth
 AND SBC.nYear = NPtile.nYear
 WHERE SBC.TotalSales >= NPtile.Cutoff
 ORDER BY nYear, nMonth, TotalSales DESC;

Figure 42 shows partial results; the surprising data for June, 2011 is because every
customer who made a purchase that month spent the same amount. (Sounds like someone
populating these sample tables got a little lazy.)

Figure 42. Only customers in the top 10% of sales for the month are included in this result.

In fact, you can use a query analogous to this one to find the products in the middle 50% of
sales for each year. That is, you can rewrite the example in Listing 50 using
PERCENTILE_CONT; Middle50PercentInSales-Percentile.SQL in the materials for this
session does just that.

You might also use these to build a table of percentiles for a standardized test, or to crunch
data for political discussions about income and taxation.

OVER and out
The more time I spend with the functions that work with OVER, the more amazed I am at
the number of problems you can solve with them. The ability to apply these functions to
groups within a query and to narrow the set of records they use makes them extremely
powerful. In preparing this session, I spent many hours trying different variations of
functions and clauses to fully understand what OVER offers. I hope this paper gives you a
jumpstart on that process, but I still recommend trying lots of variations on your own
database.

	Introduction
	CTEs: A quick review
	Ranking records
	The VFP solution
	SQL plus Xbase
	SQL-only

	The SQL Server solution
	Partitioning with OVER

	Deduping
	Which function to use?
	Dividing into percentiles

	Aggregate functions
	Computing percentages
	Counting groups
	Running totals, running counts and moving averages
	Aggregating subsets within partitions

	Analytical functions
	Comparing across records
	Looking at first and last records
	Showing distribution of records
	Searching by percentile

	OVER and out

