
January, 2002

Working with the Registry

The Registry class makes it easy

By Tamar E. Granor

The Windows Registry is full of information about the user, his or her
settings, the installed software and the machine itself. It’s often useful

to be able to extract some of that information in an application or to
store some information there. For example, in my article "Make Them

Hear You" in the November issue of FoxPro Advisor, I stored and
extracted information about system sounds and application-specific

sounds.

There's a set of API functions that work with the Registry, but using

them can be pretty complex. Fortunately, one of the class libraries that
comes with VFP 6 and 7 is Registry.VCX, which contains the class

Registry. It's in the FFC subdirectory of the VFP installation. (VFP 5
also contains a Registry class. It's PRG-based, however. It's in the

Samples\Classes subdirectory.)

The Registry class makes it much easier to work with the Registry. It
has methods for all of the operations you're likely to want to perform.

The methods make the appropriate API calls and handle errors that
occur.

The Registry Structure

The Registry has a hierarchical structure branching out from a number

of root nodes. Below each root, it's organized into keys and values.

You can think of it as a database (in fact, it is a database, though not
a relational one like VFP), where each key is a field name. However,

unlike a relational database, a field may have multiple named values.
Figure 1 shows the part of the Registry (using Windows 2000's

RegEdt32.EXE Registry Editor) that contains settings from VFP 7's
Options dialog.

Figure 1. Exploring the Registry—This portion of the HKEY_CURRENT_USER group
contains settings from VFP 7's Options dialog.

The full path to the highlighted item is
HKEY_CURRENT_USER\Software\Microsoft\VisualFoxPro\6.0\Options.

It contains quite a few values, shown in the right pane.

The names of the root nodes (like HKEY_CURRENT_USER) are actually

constants representing large, negative numbers. You'll find their
values in Registry.H in the same directory as the Registry class.

Otherwise, the names you see in the registry editor are the names you

use to access the various items.

The Registry Class

To use the registry class, you need to instantiate it, like this:

oRegistry = NewObject("Registry", ;
 HOME() + "FFC\Registry.VCX")

The class has a number of methods meant for public use. There are

also a number of other methods designed for internal use by the

"public" methods, but for some reason, they're not marked as
protected. The methods intended for public use are reasonably well

documented in the Help entry "Registry Access Foundation Class."
We'll look at a few of them here to show how you can accomplish

some basic tasks and to deal with some of the not-so-obvious things.

Does a Key Exist?

The first task is determining whether a particular Registry key exists.
The IsKey method is designed specifically for this purpose. It takes

two parameters: the key we're looking for and the root node. For
example, to check for the key mentioned above, we'd called the

method like this:

#DEFINE HKEY_CURRENT_USER -2147483647
lExists = oRegistry.IsKey(;
 "Software\Microsoft\VisualFoxPro\7.0\Options", ;
 HKEY_CURRENT_USER)

IsKey returns .T. if it finds the key and .F. otherwise.

Getting Key Values

Now, let's retrieve the value of a key. When you have a multi-valued

key like the VFP 7 Options key, you can ask for specific items. The
GetRegKey method retrieves the value. To use it, you must first create

a variable to hold the result and then pass that variable by reference.
(Note that the Registry class can only deal with character values. Only

those items that show a type of REG_SZ in the Registry Editor can be
accessed through this class. Also, be aware that even numeric values

are returned as characters.) Like many of the Registry class's
methods, GetRegKey returns an error code. A return value of 0

indicates success; a non-zero value indicates failure.

To get the name of the current builder application (_BUILDER in VFP),

use code like this:

#DEFINE HKEY_CURRENT_USER -2147483647
cValue = ""
nError = oRegistry.GetRegKey("_Builder", @cVal, ;
 "Software\Microsoft\VisualFoxPro\7.0\Options", ;
 HKEY_CURRENT_USER)

The first parameter indicates the name of the item you want to

retrieve. In Figure 1, it's the string that precedes the colon in the right
pane. The second parameter is the variable to hold the result. The

third parameter is the key name and the final parameter is the root
node (HKEY_CURRENT_USER, in this case).

The Registry class provides an alternate way to retrieve the same

information. This approach requires two steps. First, you "open" the
key, making it the current focus of attention. (Opening a key is

analogous to selecting a work area in VFP.) Then, you can retrieve the

value you want without having to specify the name of the key. The

following code gives the same results as the previous example:

#DEFINE HKEY_CURRENT_USER –2147483647
cValue = ""
nError = oRegistry.OpenKey(;
 "Software\Microsoft\VisualFoxPro\7.0\Options", ;
 HKEY_CURRENT_USER, .f.)
IF nError = 0
 nError = oRegistry.GetKeyValue("_Builder", @cVAl)
ENDIF

What's the benefit of having two ways to do this? Not a whole lot,
though I suspect that when you're retrieving a whole series of values

from the same key, the second approach is faster, since you don't
have to go hunting for the key each time. However, there are some

methods that require you to open the key first.

Suppose you want to get all the values for a particular key. The

EnumKeyValues method lets you put the list of names and values into
an array. EnumKeyValues has a single parameter, an array. If you

pass a one-dimensional array, it retrieves only the names for the
values. If you pass a two-dimensional array, however, EnumKeyValues

gets both the names and values. Whichever way you do it, though, the

key you're interested in must be opened first.

For example, this code gets the full list of names and values for the

Options key:

#DEFINE HKEY_CURRENT_USER –2147483647
DIMENSION aOptionsValues[1,2]
nError = oRegistry.OpenKey(;
 "Software\Microsoft\VisualFoxPro\7.0\Options", ;
 HKEY_CURRENT_USER, .f.)
IF nError = 0
 nError = oRegistry.EnumKeyValues(@aOptionsValues)
ENDIF

Here's the first few rows of aOptionsValues after running this code:

 (1, 1) C "LastProject"
 (1, 2) C "1"
 (2, 1) C "TALK"
 (2, 2) C "ON"
 (3, 1) C "StatusBar"
 (3, 2) C "1"

Sometimes what you want isn't a list of values, it's a list of subkeys.
The EnumKeys method fills an array with the subkeys for the open

key. Like EnumKeyValues, it requires the key of interest to be open

first. No matter what kind of array you pass, EnumKeys creates a one-

dimensional array with one item for each subkey.

This code gets the list of subkeys for the Options key:

#DEFINE HKEY_CURRENT_USER –2147483647
DIMENSION aOptionsSubkeys[1]
nError = oRegistry.OpenKey(;
 "Software\Microsoft\VisualFoxPro\7.0\Options", ;
 HKEY_CURRENT_USER, .f.)
IF nError = 0
 nError = oRegistry.EnumKeys(@aOptionsSubkeys)
ENDIF

Here's the total contents of aOptionsSubKeys after this code:

 (1) C "IDE"
 (2) C "IntelliDrop"

To get a full list of all the values for a key and its subkeys, you can use
EnumKeys and EnumKeyValues in a recursive routine. The program in

Listing 1 (on this month's Professional Resource CD as aGetKeys.PRG)
fills an array with this information.

Listing 1. Retrieving all subkeys and values – This recursive program starts with a
key and fills an array with all the values for that key and its subkeys.

* aGetKeys.PRG
* Copyright 2001, Tamar E. Granor
* Get all keys and subkeys of a specified key
* with their values.
* This routine is recursive.
LPARAMETERS aAllKeys, cKey, nRoot, oRegistry
 * aAllKeys = the array to hold the keys and values
 * cKey = the key to start with
 * nRoot = the root node in the Registry
 * oRegistry = object reference to an instance of
 * the Registry class

* Check parameters
ASSERT TYPE("aAllKeys[1]") <> "U" ;
 MESSAGE "aGetKeys: First parameter must be an array"
IF TYPE("aAllKeys[1]") = "U"
 ERROR 232,"aAllKeys"
 RETURN -1
ENDIF

ASSERT VARTYPE(cKey) = "C" AND NOT EMPTY(cKey);
 MESSAGE "aGetKeys: Second parameter (cKey) must be " + ;
 "character and not empty"
IF VARTYPE(cKey) <> "C" OR EMPTY(cKey)
 ERROR 11
 RETURN -1

ENDIF

ASSERT VARTYPE(nRoot) = "N" AND NOT EMPTY(nRoot) ;
 MESSAGE "aGetKeys: Third parameter (nRoot) must be " + ;
 "numeric and not empty"
IF VARTYPE(nRoot) <> "N" OR EMPTY(nRoot)
 ERROR 11
 RETURN -1
ENDIF

* Check for a registry object
IF VARTYPE(oRegistry) <> "O"
 oRegistry = NEWOBJECT("Registry", ;
 HOME() + "FFC\Registry")
ENDIF

LOCAL aValues, aKeys
LOCAL nCountSoFar, nValues, nItem, nKey

* Open the key and get started
WITH oRegistry
 IF .OpenKey(cKey, nRoot) = 0
 * Get the values at this level and
 * copy them to the master array
 IF .EnumKeyValues(@aValues) = 0
 nCountSoFar = ALEN(aAllKeys, 1)
 IF EMPTY(aAllKeys[1,1])
 nCountSoFar = 0
 ENDIF
 nValues = ALEN(aValues, 1)
 DIMENSION aAllKeys[nCountSoFar + nValues, 3]
 FOR nItem = 1 TO nValues
 aAllKeys[nCountSoFar + nItem, 1] = cKey
 aAllKeys[nCountSoFar + nItem, 2] = ;
 aValues[nItem, 1]
 aAllKeys[nCountSoFar + nItem, 3] = ;
 aValues[nItem, 2]
 ENDFOR
 ENDIF

 * Now get the keys at this level
 IF .EnumKeys(@aKeys) = 0
 nKeyCount = ALEN(aKeys)
 FOR nKey = 1 TO nKeyCount
 aGetKeys(@aAllKeys, ;
 ADDBS(cKey) + aKeys[nKey], ;
 nRoot, oRegistry)
 ENDFOR
 ENDIF
 ENDIF
ENDWITH

RETURN ALEN(aAllKeys, 1)

Changing Registry Data

Now that we know how to retrieve all the information in the Registry,
the next step is to be able to change the values there and to add new

ones. The SetRegKey method lets you set a value for a key. This line
creates a new Registry key (HKEY_CURRENT_USER\Software\Test)

and creates an item called First with a value of "abc".

nError = oRegistry.SetRegKey("First", "abc", "Software\Test", ;
 -2147483647, .T.)

The first four parameters are the same as for GetRegKey, except that
the second parameter is the actual value to store (though you can, of

course, use a variable to pass it). The last parameter indicates
whether the key should be created if it doesn't already exist.

As with retrieving a value, you can also set a value in two steps, using
OpenKey first, then using SetKeyValue. Here's the same example,

using the two-step process.

#DEFINE HKEY_CURRENT_USER –2147483647
nError = oRegistry.OpenKey(;
 "Software\Microsoft\VisualFoxPro\7.0\Options", ;
 HKEY_CURRENT_USER, .t.)
IF nError = 0
 nError = oRegistry.SetKeyValue("First", "abc")
ENDIF

Note the third parameter to OpenKey. As in GetRegKey, this

parameter determines whether the key should be created if it doesn't
exist.

Handling Nameless Values

As you explore the Registry, you'll probably notice that some keys
have a value with no name. For example, the key

HKEY_CURRENT_USER\AppEvents\EventLabels\.Default has a single
value ("Default Beep", on my machine), shown in Figure 2. In the

Registry Editor, the value is preceded by the string "<No Name>".

Figure 2. No name - Some keys have an unnamed value. To set this value, you need
to use a string set to .null. for the name parameter of SetRegKey.

Since GetRegKey and SetRegKey require the name of the value to

retrieve, a nameless value presents a problem. The solution is slightly
different for retrieving the value than for storing it. With GetRegKey,

the secret is to pass the empty string for the name, like this:

nError = oRegistry.GetRegKey('', @cSound, ;
 "AppEvents\EventLabels\.Default", -2147483647)

SetRegKey uses a different approach. In that case, you need to pass

the .null. value. However, it's not sufficient to pass .null. as a constant
– you need to create a character variable and set it to .null., like this:

#DEFINE HKEY_CURRENT_USER –2147483647
cNull = ''
cNull = .null.
nError = oRegistry.SetRegKey(cNull, cSound, ;
 "AppEvents\EventLabels\.Default", HKEY_CURRENT_USER)

Removing Registry Keys

Finally, you may want to remove a key from the Registry. The
DeleteKey method does that. It requires two parameters – the numeric

root node and the full key except for the root node. For example, to
delete the Software\Test key created earlier, use this code:

nError = oRegistry.DeleteKey(-2147483647, ;
 "Software\Test")

There's one complication when deleting Registry keys. You can't delete
a key that has any subkeys, so you have to use a recursive routine

that drills down into the key, deleting all the subkeys before deleting
the current key. This month's Professional Resource CD contains

DrillDownDelete.PRG, a routine that deletes a key and its subkeys.

* PROCEDURE DrillDownDelete
* Copyright 2001, Tamar E. Granor

* Drill down into a key, deleting all subkeys,
* then deleting the key itself.
* This procedure is recursive.

LPARAMETERS oRegistry, cKey, nRegKey
 * oRegistry = object reference to Registry object
 * cKey = key to be deleted
 * nRegKey = hive from which key is to be deleted

* Check parameters
ASSERT VARTYPE(oRegistry) = "O" ;
 MESSAGE "DrillDownDelete: First parameter is " + ;
 "required pointer to registry object"

IF VARTYPE(oRegistry) <> "O"
 ERROR 11
 RETURN .f.
ENDIF

ASSERT VARTYPE(cKey) = "C" AND NOT EMPTY(cKey) ;
 MESSAGE "DrillDownDelete: Second parameter is " + ;
 "required registry key"

IF VARTYPE(cKey) <> "C" or EMPTY(cKey)
 ERROR 11
 RETURN .f.
ENDIF

ASSERT VARTYPE(nRegKey) = "N" AND NOT EMPTY(nRegKey) ;
 MESSAGE "DrillDownDelete: Third parameter is " + ;
 "required registry node"

IF VARTYPE(nRegKey) <> "N" OR EMPTY(nRegKey)
 ERROR 11
 RETURN .F.
ENDIF

* set up an array to hold the list of subkeys
LOCAL aKeys[1], lSuccess, nSubkeyCount, nKey

lSuccess = .t.

WITH oRegistry
 IF .OpenKey(cKey, HKEY_CURRENT_USER) = 0
 IF .EnumKeys(@aKeys) = 0

 * Loop through subkeys
 nSubkeyCount = ALEN(aKeys, 1)
 FOR nKey = 1 TO nSubKeyCount
 lSuccess = DrillDownDelete(oRegistry, ;
 cKey + "\" + aKeys[nKey], ;
 nRegKey)
 ENDFOR
 ENDIF
 IF .DeleteKey(nRegKey, cKey) = 0

 lSuccess = lSuccess and .T.
 ELSE
 lSuccess = .F.
 ENDIF
 ELSE
 lSuccess = .F.
 ENDIF
ENDWITH

RETURN lSuccess

Go Forth and Register

As always when working with the Registry, be careful. Changing the
wrong thing in the Registry can really foul up your system. On the

other hand, experiment with reading values all you want. You can't
cause any damage that way.

You may also want to subclass the Registry class to make it even
easier to use. The Registry.VCX class library contains several

subclasses that have methods for exploring particular parts of the
Registry. Contributing Editor Steve Sawyer suggests subclasses for

particular root nodes, as well as hard-coding options that you always
use. (For example, he sets SetRegKey to always create a key if it

doesn't exist.) You might also subclass for the tasks you use the
Registry for all the time, creating methods that do your common tasks,

so you don't have to remember the parameters for the various
methods. Your custom methods might include some to set and extract

options for your applications.

Although working with the Registry can seem quite daunting at first,
the Registry class makes it pretty straightforward. A little

experimentation with its methods should give you a pretty good feel
for which ones to use when.

