
July, 2001

Advisor Answers

Working with Collections

VFP 7.0/6.0/5.0/3.0

Q: I keep hearing about collections, but though I've been working with
VFP since 1995, I don't understand how they work. Can you give me a

simple overview?

–Dave Birley (via CompuServe.COM)

A: Think of a collection as the OOP version of an array. A collection
contains objects in an indexed way. In VFP, the Forms property of

_SCREEN is a collection, containing one entry for each form or custom
toolbar currently defined. Each entry is an object reference to the form

or toolbar. The Columns property of a grid is also a collection. It
contains one entry for each column in the grid. So you can refer to the

first open form in VFP as _SCREEN.Forms[1] and the third column of a
grid called grdMyGrid sitting on the active form is

_SCREEN.ActiveForm.grdMyGrid.Columns[3].

Once you have access to an object in this way, you can refer to its
properties and methods just as you can with a more direct way of

addressing. So you can change the caption of the first form, like this:

_SCREEN.Forms[1].Caption = "Hey, I'm first!"

or check a property of the column mentioned above, like this:

IF _SCREEN.ActiveForm.grdMyGrid.Columns[3].Sparse
 * do something
ENDIF

The collections that are built into VFP each have an associated …Count

property. For example, FormCount tells how many items are in Forms,
while ColumnCount indicates how many columns are in Columns. You

can use these properties to find out how many there are or to control a
loop:

IF _SCREEN.FormCount = 0
 * do something
ENDIF

FOR nColumn = 1 TO _SCREEN.ActiveForm.grdMyGrid.ColumnCount
 * do something to each column

ENDFOR

Although they look like arrays, you can't apply VFP's array functions to
collections. So you can't issue something like:

nForms = ALEN(_SCREEN.Forms,1)

Of course, in this example, you can use FormCount, instead.

COM uses collections extensively. The Projects property of _VFP is a
COM collection, for example, as is the Files collection individual

projects contain. When automating other applications, collections tend
to play a big part, too. For example, Word's object model includes

Documents, Paragraphs, Sections and Styles collections, among many
others. Outlook's object model has a Folders collection; the individual

Folder objects often contain another Folders collection. In the Windows
Scripting Host (WSH), there's a Drives collection, a Subfolders

collection, and a Files collection.

Most COM collections have a Count property and an Items property
(though the WSH calls it Item rather than Items). The Count property

tells you how many items are in the collection. The Items property
gives you access to the individual members of the collection. For

example, you can reference the first open project in VFP by using:

_VFP.Projects.Items[1]

Either parentheses or square brackets are acceptable here. If you've
created an instance of Word and stored a reference to it in oWord, you

can access the third open document in Word as:

oWord.Documents.Items[3]

Many collections let you leave out the Items keyword and just
reference their members directly from the collection. So you can get to

that same project with:

_VFP.Projects[1]

and to the same document as:

oWord.Documents[3]

It's not unusual for a collection to let you reference its members both

numerically (as in the examples above) and by name. So, if it's open, I
can access the TasTrade project as:

_VFP.Projects["TasTrade.PJX"]

If the third document is "MyDoc.Doc", I can access it as:

oWord.Documents["MyDoc.Doc"]

The WSH is different – it doesn't accept a numerical index, but

requires the name of the object.

Many object models include one or more properties to provide direct

access to collection members that are currently in use. For example,
_VFP has an ActiveProject property and Word has an ActiveDocument

property.

As with VFP's native collections, once you have a reference to a

particular member, you can check or change properties or call
methods:

_VFP.Projects["TasTrade.PJX"].Build()

The technique for adding members to a collection varies with the

collection. Many have an Add method that lets you put something else

in. For example, to open a new document in Word and add it to the
Documents collection, you use:

oWord.Documents.Add()

In other cases, though, the collection gets a new member because of

another action. For example, opening a VFP project with MODIFY
PROJECT adds it to the Projects collection. There's no way to directly

add a project to the collection. Generally, it's the nature of the objects
in the collection that determines whether there's an Add method or

not.

Removing items from a collection also varies. In some cases, objects

are removed when another action occurs. For example, a project is
removed from the Projects collection when you close it. In other cases,

there's a method to remove the object. In general, when such a

method exists, it's a method of the object itself, not of the collection.
Sometimes, that method has another action that results in the object

being removed from the collection. For example, when you execute a
Document's Close method, it's removed from the Documents

collection:

oWord.ActiveDocument.Close()

Finally, in some cases, there is actually a Remove method. For
example, you can remove a file from a project's Files collection (which

has the effect of removing it from the project) using the File object's

Remove method:

_VFP.ActiveProject.Files["Junk.Txt"].Remove()

One of the advantages of a collection is that it makes it easy to
process all the members in some way. The FOR EACH loop is the

easiest way to do something to every member of a collection. For
example, to see what projects are open, you can use:

FOR EACH oProject IN _VFP.Projects
 ?oProject.Name
ENDFOR

Obviously, what goes inside the loop can be much more complex, and

can check some property of the object to determine whether to

process it. For example, this loop checks each open document in Word
and, if it's already been saved, closes it:

FOR EACH oDocument IN oWord.Documents
 IF oDocument.Saved
 oDocument.Close()
 ENDIF
ENDFOR

Understanding collections is a key part of working in the COM world.
Since VFP has native collections as well, getting a firm grasp on

collection fundamentals can improve your productivity.

–Tamar

