
December, 2004

Build your own Property Editors

VFP 9 lets you attach custom code to the Property Sheet

By Tamar E. Granor, Technical Editor

One of the most exciting changes in VFP 9 is the ability to add custom
editors to the Property Sheet. Some properties already let you specify

a value using a specialized tool. For example, all the color-related
properties give you access to the Color Picker, while Icon and Picture

use the GETPICT() dialog. Other properties, like AlwaysOnTop and
FontName, use a dropdown combo. Until VFP 9, though, you were

stuck with the default textbox for any properties where such a tool
wasn't specified, including your custom properties. That's changed;

VFP 9 lets you specify an editor to use for any property that doesn’t
use one of the built-in mechanisms. If you want, you can specify a

different editor for each property.

Why would you want to specify a property editor? To make it easier to

set a property correctly. For example, the new Anchor property is

complicated, so the VFP team included a custom property editor for it.
(See the Advisor Answers column in the November, 2004 issue for

more on Anchor and the Anchor Editor.) When the set of possible
values for a custom property is limited, a property editor lets you

present that list to the developer and encourage him to choose from
that set. Be aware, though, that Property editors don't prevent a

developer from typing an invalid value into the textbox in the Property
Sheet.

Using a Property Editor

When a property has a property editor, an ellipsis (three dots) button
appears next to the textbox in the Property Sheet, as in Figure 1. Click

the button and the specified property editor appears.

Figure 1. Invoking a property editor—When a property has a property editor, the
ellipsis button appears next to the textbox. Click the button to run the property
editor.

Property Editors and _MemberData

Propertyeditors work through the new _MemberData property, which

you can add to any form or class to specify the behavior of that form's

or class's PEMs in the development environment. (See the Advisor
Answers column in the November issue for a discussion of other uses

of _MemberData.)

_MemberData contains an XML string in a format easy to convert to a

VFP table. The top-level element is <VFPData>. Within the <VFPData>
element, there are <memberdata> elements for those properties and

methods that have customization specified. Each memberdata element
has attributes. Two attributes are required: name (the name of the

PEM) and type ("property", "event" or "method"). You can add any
other attributes you want, but support for several is included in the

product.

For properties, one optional attribute is script, which specifies a

property editor. A script is just VFP code. A typical script prompts the
developer for the data and stores it appropriately.

Specifying a property editor

The easiest way to specify a property editor is by using the
MemberData Editor. This tool (shown in Figure 2) is listed on the Form

or Class menu when you’re working in the Form Designer or Class
Designer. It provides a convenient interface for entering _MemberData

contents. (The version of the MemberData Editor shown here is
significantly different from the one included with the public beta of VFP

9. However, the public beta does support property editors.) The list on

the left shows the PEMs of the object. When you select a PEM in the
list, its memberdata is shown on the right and can be edited.

Figure 2. The MemberData Editor—Use this new tool to specify property editors, as
well as capitalization of custom properties and methods, and other Property Sheet
customization.

To specify a property editor, select the property and click the Zoom

button next to Script. A code window opens and you can type your
script. Close the code window to save the script in the MemberData

Editor. When you close the MemberData Editor, your new property
editor will be available. The MemberData Editor adds the _memberdata

property to the form or class, if it doesn’t already exist, and populates
it with the appropriate XML.

Building a property editor

Property editors have a lot in common with builders. Both let you set
properties at design-time and both have to figure out what to modify.

However, property editors are a lot easier to build and distribute than
builders.

A property editor has three key tasks: identifying the object(s)
involved, soliciting input from the user (throughout this article, the

"user" is a developer creating or modifying a form or class), and
saving the user's input to the relevant property or properties. Here's

the code for a property editor that calls on the Color Picker for a

custom property called nEmphasisColor:

LOCAL aControl[1], nColor

IF ASELOBJ(aControl) = 0
 IF ASELOBJ(aControl, 1) = 0

 RETURN
 ENDIF
ENDIF

* Grab default value
IF VARTYPE(aControl[1].nEmphasisColor) = "N"
 nColor = aControl[1].nEmphasisColor
ELSE
 nColor = 0
ENDIF

nColor = GETCOLOR(nColor)

aControl[1].nEmphasisColor = nColor

RETURN

The first section of code uses ASELOBJ() to get an object reference to

the selected control. If no control is selected, ASELOBJ() is called again
to get a reference to the form or class. The second section of code

calls GETCOLOR(), passing in the current setting for nEmphasisColor.
The final part of the code is the single line that sets the

nEmphasisColor property of the selected control, form or class to the
value specified.

Using a form in a property editor

While VFP offers a lot of functions, such as GetColor(), GetPict(),
GetFile(), GetDir() and InputBox(), that make it easier to specify

property values, some properties need more complicated input. The
Anchor Editor demonstrates that a custom form may be the

appropriate mechanism for specifying a given property. The Anchor
property is specified by adding together a number of values based on

individual bit settings within a single byte. Another value created by
summing bits is the second argument to the MessageBox() function. A

form that makes it easy to specify the parts of the value and adds

them together is handy. Figure 3 shows such a form.

Figure 3. MessageBox() settings—Specifying the second parameter for
MessageBox() is much easier with a form like this.

If you have a property to hold that parameter value, then it's

convenient to call on the form as a property editor. Here's the code—of
course, in a production setting, you need to make sure the form is

either in the VFP path or that the reference to the form is fully pathed:

LOCAL aControl[1], nParam

IF ASELOBJ(aControl) = 0
 IF ASELOBJ(aControl, 1) = 0
 RETURN
 ENDIF
ENDIF

DO FORM MessageboxParams WITH aControl[1].nMessageBoxParams TO nParam

aControl[1].nMessageboxParams = nParam

This code has the same three parts as the previous example:

identifying the control to modify, getting input from the user, and
storing the result to the specified property. (The form

MessageBoxParams.SCX is included on this month's Professional

Resource CD, along with an example form, PropertyEditors.SCX, that
includes the nMessageBoxParams property.)

Setting multiple properties

A property editor isn't restricted to setting a single property. You can

use one property editor to set multiple, related properties. For
example, using the property editor for FontCharSet lets you also set

the FontName, FontSize, FontBold and FontItalic properties at the

same time. (This property editor is actually built into the VFP engine,
but you could build it using the GetFont() function, if it weren't.)

Another pair of properties that's related is Height and Width. Often,

you can set these just by dragging, but sometimes you need to resize
a control or form and want to be sure to keep the new size

proportional to the current size. Figure 4 shows a property editor that
lets you specify Height and Width with a spinner. If the checkbox is

checked, changing one changes the other proportionally.

Figure 4. This property editor lets you change the height and width of a control
proportionally.

This property editor (included on this month's PRD as
PropEditSize.SCX) has more code than the previous examples, but the

key code is quite similar. The Load method of the form grabs a
reference to the selected control or form and saves it in a form

property. The Click method of the OK button calls a custom method,
UpdateSize, that saves the new Height and Width values to the control

or form. One big difference between this example and the last one is
that this form is designed to work only as a property editor. The

MessageBox() parameters form could be called as a standalone form in
other contexts.

This property editor should be called from both the Height and Width

properties of controls that use it. All it takes is one line of code as the
Script:

DO FORM PropEditSize && add path, if necessary

This month's PRD also contains PropertyEditors.VCX, a class library

that holds imgEditSize. The class's _MemberData is configured to use
the PropEditSize form as the property editor for both Height and

Width.

Making property editors generally available

The previous example shows one way to make a property editor

available for more than a single form. When you set up a property

editor for a class, it applies not only to that class and its instances, but

to any subclasses, as well. That works well when you have a property
that's specific to a single class hierarchy.

In many cases, though, you want to use the same property editor for
every class or form in which the given property appears. For example,

the property editor for Height and Width in Figure 4 is generally useful.

You can make a property editor available across the board by storing it

in your IntelliSense table, which is referenced by the _FoxCode system
variable. By default, the table is called FoxCode.DBF and is found in

your application data directory (referenced by HOME(7)). The easiest
way to get a look at the IntelliSense table is using the IntelliSense

Manager (Tools | Intellisense Manager on the menu); click Browse on
the General Page. Property Editor records in the IntelliSense table

have a type of "E".

The MemberData Editor (shown in Figure 2) offers a simple way to add

a property editor to the IntelliSense table. Choose the Global option

for Scope, then check Has MemberData and specify the script. When
you leave the MemberData Editor, the appropriate record is added to

the IntelliSense table.

Once you specify a global property editor for a given property, it's

available to any form or class that includes that property. However,
you can override it in a particular form or class. With the MemberData

Editor pointing at the property, choose the Object option for Scope and
check Has MemberData. To use a different property editor for the

property in this form or class, specify a different script. To simply turn
off the property editor, check the Override checkbox; be aware that

doing so turns off all global settings for this property, not just the
property editor. That is, if the specified property has a display name or

was set for the Favorites page, checking Override overrides those
settings as well, so you can easily end up eliminating functionality you

previously added. You can work around this problem by specifying an

"empty" property editor (such as RETURN "").

Making property editors generic

Some property editors can apply to more than one property. For
example, you might want to use the script that calls the Color Picker

for a variety of custom color-related properties. (You don't need it for
the native color properties because they already call on the Color

Picker.) The problem is that the code sets the property directly, but

there's no ASelObj() analogue to tell us what property invoked the

property editor.

Fortunately, the Fox team provided a way to do this, though it's a little

clumsy. A new method, called RunPropertyEditor, was added to the
IntelliSense engine. This method receives a parameter, to which you

can pass the name of the relevant property. You can use
RunPropertyEditor to run code in a type "S" (script) record in the

IntelliSense table. The parameter received by RunPropertyEditor is
passed along to the script code it runs.

VFP 9 includes a property editor for the Caption property that calls the
InputBox() function and sets Caption to the user's entry. This property

editor uses the RunPropertyEditor mechanism.

The IntelliSense table that comes with VFP 9 includes a type "E" record

for Caption; the key fields are shown in Table 1. The Tip field includes
the script attribute:

DO (_CODESENSE) WITH 'RunPropertyEditor','','caption'

_CODESENSE is a pointer to the IntelliSense application. When you
call that application, passing a method name as the first parameter, it

executes the specified method, passing on the third through sixth
parameters to the method. (In the code above, there's only one

parameter to pass to the RunPropertyEditor method.)

Table 1. Using a generic property editor—The IntelliSense table in VFP 9 contains
this record to provide a property editor for the Caption property.

Field Value

Type "E"

Abbrev "Caption"

Cmd "{CaptionScript}"

Tip "<VFPData><memberdata name="caption" type="property"
favorites="True" script="DO (_CODESENSE) WITH

'RunPropertyEditor','','caption'"/></VFPData>"

Data ""

The RunPropertyEditor method finds the relevant record in the

IntelliSense table—the one with Type="E" and Abbrev equal to the
parameter it receives. If the Cmd field in that record contains the

name of a script (as in Table 1), the method looks for a record with
the specified script name and Type="S" and executes the contents of

the Data field of that record. If the Cmd field of the Type "E" record
doesn't contain a script name (no curly braces), RunPropertyEditor

executes whatever code is found in the Data field of the Type "E"
record. Whichever code it runs, RunPropertyMethod passes on the

parameter it received.

You can see all this for yourself by examining the appropriate records

near the end of the IntelliSense table that comes with VFP 9 and the
code in FoxCode.PRG. To find the code, unzip the file XSource.ZIP

found in Tools\XSource of your VFP 9 installation. After unzipping,
FoxCode.PRG is in Tools\XSource\VFPSource\FoxCode.

The CaptionScript record in the IntelliSense table is shown in Table 2.

The script actually isn't quite as generic as you might like, since it sets
the caption of the InputBox() to "Caption Property Editor." If you want

to use it more generally, you'll probably want change that. It's also
worth noting that this script is set up to handle multiple selected

objects.

Table 2. A generic property editor—This record in the IntelliSense table specifies a
generic property editor for strings. It receives the name of the property to modify as
a parameter.

Field Value

Type "S"

Abbrev "CaptionScript"

Cmd "{}"

Tip ""

Data #DEFINE IBOX_CAPTION "Caption Property Editor"
#DEFINE IBOX_TEXT "Enter value for property: "
#DEFINE USER_CANCEL "__usercancelled__"

LPARAMETERS tcProp
LOCAL ARRAY laObjs[1]
LOCAL lcRetVal, lnCnt, loCtl,lcDefValue, lnSuccess
IF ASELOBJ(laObjs)=0
 IF ASELOBJ(laObjs,1)=0
 RETURN

 ENDIF
ENDIF
lcDefValue=IIF(ALEN(laObjs,1)=1,laObjs[1].&tcProp,"")
lcRetVal=INPUTBOX(IBOX_TEXT + tcProp, IBOX_CAPTION, lcDefValue, 0,
"", USER_CANCEL)
IF lcRetVal==USER_CANCEL
 RETURN
ENDIF
FOR lnCnt = 1 TO ALEN(laObjs,1)
 loCtl = laObjs[lnCnt]
 IF PEMSTATUS(loCtl, tcProp, 5)
 loCtl.&tcProp = lcRetVal
 ENDIF
ENDFOR

To use this property editor for another property (say Name), we need
to add a type "E" record for the property. While you can add the

record using the MemberData Editor by specifying global scope, that

tool doesn't provide a way to set the Cmd field, so once you've added
the record, you need to open the IntelliSense table and point the new

record to the appropriate script record, CaptionScript.

Get it right

Custom property editors mean you can create classes and increase the
chances of their being used correctly. While this might seem most

important in a team environment, where one developer creates classes

used by other developers, the truth is when you return to your own
classes after some time has elapsed, it can be hard to remember the

correct range of values or even data type for some properties. With a
custom property editor, that information is carried right in the class.

FoxPro's open architecture has proved useful over and over. Property
editors are just one more example of the Fox team handing us the

ability to make using VFP easier.

