Using OVER with analytic
functions, Part 2

The final group of T-SQL functions that work with OVER compute and analyze

percentiles and distributions.

Tamar E. Granor, Ph.D.

In my last article, I showed how you can use
OVER with the LAG, LEAD, FIRST_VALUE and
LAST_VALUE functions to put data from different
records in a partition into a single result record.
This article explores the last set of functions that
work with SQL Server’s OVER clause; these involve
percentiles and distributions.

Dividing records into n-tiles

My discussion of OVER started (in the May, 2014
issue) with using it to assign ranks to records.
The ROW_NUMBER, RANK and DENSE_RANK
functions discussed there assign an integer to each
result record representing its position in the set.
Each of the three functions handles ties differently.

A fourth function in that group, NTILE, divides
the records up as evenly as possible into a specified
number of groups. The function takes a single
parameter thatindicates the number of groups to create.
For example, the query in Listing 1 (SalesQuartiles.sql
in this month’s downloads) computes the total sales
for each salesperson by year, and then divides each
year's sales into four groups (quartiles) from lowest to
highest. Figure 1 shows partial results; as you can see,
when the number of records in the partition can’t be
divided evenly into the specified number of groups,
earlier groups get an extra record.

Listing 1. The NTILE function divides each partition into a
specified number of groups.

WITH csrAnnualSales
(SalesPersonID, OrderYear, TotalSales)

AS

(SELECT SalesPersonID, YEAR (OrderDate),
SUM (SubTotal) AS TotalSales
FROM [Sales].[SalesOrderHeader]
WHERE SalesPersonID IS NOT NULL
GROUP BY SalesPersonID, YEAR (OrderDate))

SELECT SalesPersonID, OrderYear, TotalSales,
NTILE (4) OVER
(PARTITION BY OrderYear
ORDER BY TotalSales) AS Quartile
FROM csrAnnualSales

Page 6 FoxRockX

SalesPersonlD OrderYear TotalSales Quartile
2011 28926.2465 1
278 2011 500091.8202 1
283 2011 599987.9444 1
280 2011 648485.5862 2
275 2011 8758238318 2
281 2011 967597.2899 2
276 2011 1149715.3253 3
282 2011 1175007.4753 3
277 2011 1311627.2918 4
279 2011 1521289.1881 4
287 2012 116029.652 1
284 2012 441639.5961 1
274 2012 453524 .5233 1
290 2012 996291.908 1
280 2012 1208264.3834 2

Figure 1. NTILE makes the groups as even as possible.
Here, there are 10 records for 2011, so groups 1 and 2 have 3
records each, while groups 3 and 4 have 2 apiece.

If you change the parameter to NTILE() to 5 (as
in Listing 2), you get quintiles instead of quartiles,
as in Figure 2.

SalesPersonlD OrderYear TotalSales Quintile
2011 28926.2465 1
2011 500091.8202 1
2011 599987.9444 2
2011 648485.5862 2
2011 875823.8318 3
2011 967597.2899 3
2011 1149715.3253 4
2011 1175007.4753 4
2011 1311627.2918 5
2011 1521289.1881 5
2012 116029.652 1
2012 441639.5961 1
2012 453524.5233 1
2012 996291.908 2

280 2012 1208264.3834 2
Figure 2. Here, 5 was passed to NTILE(), so there are five
groups for each year. As before, the group sizes are as even
as possible.

July 2015

Listing 2. The parameter to NTILE() determines how many
groups the records in each partition are divided into.

NTILE (5) OVER
(PARTITION BY OrderYear
ORDER BY TotalSales) AS Quintile

Like the other ranking functions, NTILE dates
back to SQL Server 2005.

Showing distribution of records
The analytical function group, added in SQL Server
2012, offers ways to rank the records relatively. The
CUME_DIST() and PERCENT_RANK() functions
both assign each record a value between 0 and 1
representing its position in the partition based
on the specified order for the partition. The two
functions differ in whether any record is assigned
0; that difference in the first record of the partition
leads to different results throughout.

The easiest way to understand the difference
between these functions, and between these two
and the RANK function described in my May,
2014 article, is to look at the results. The query in
Listing 3 (RankAndDistribution.sql in this month’s
downloads) computes sales by salesperson by year,
and then applies a series of analytics to the data.
Partial results are shown in Figure 3.

TotalSales CumeDist
28926.2465 0.1

"SalesPersonID OrderYear

ORDER BY TotalSales) AS CumeDist,
PERCENT RANK () OVER
(PARTITION BY OrderYear
ORDER BY TotalSales) AS PctRank,
RANK () OVER
(PARTITION BY OrderYear
ORDER BY TotalSales) AS Rank,
COUNT (SalesPersonID) OVER
(PARTITION BY OrderYear
ORDER BY TotalSales
RANGE BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING)
AS GroupCount,
CAST (1.00 * RANK() OVER
(PARTITION BY OrderYear
ORDER BY TotalSales) /
COUNT (SalesPersonID) OVER
(PARTITION BY OrderYear
ORDER BY TotalSales
RANGE BETWEEN UNBOUNDED PRECEDING
AND UNBOUNDED FOLLOWING)
AS decimal (5,2)) AS ComputedDist
FROM csrAnnualSales

Consider the results for 2011. There are 10
records, each with a different value for TotalSales.
CUME_DIST divides them into ten evenly-spaced
groups. PERCENT_RANK does the same, but
the first record always has a rank of 0. The query
also demonstrates that you can actually compute
CUME_DIST by dividing the RANK of a row by
the number of rows in the partition (that is COUNT
applied to the same partition).

284 2012 441639.5961
274 2012 453524.5233
290 2012 996291.908
280 2012 1208264.3834

500091.8202 0.2

5999879444 0.3

6484855862 04

875823.8318 0.5

967597.2899 0.6

1149715.3253 0.7

1175007.4753 0.8

1311627.2918 0.9

1521289.1881 1

116029.652 0.0714285714285714

0.142857142857143
0.214285714285714
0.285714285714286
0.357142857142857

PctRank Rank GroupCount ComputedDist
0 10 0.10
0111111111111 2 10 0.20
0.222222222222222 3 10 0.30
0.333333333333333 4 10 0.40
0.444444444444444 5 10 0.50
0.555555555555556 6 10 0.60
0.666666666666667 7 10 0.70
0.777777777777778 8 10 0.80
0.888888888888889 9 10 0.90
1 1 10 1.00
0 1 14 0.07
0.0769230769230769 2 14 0.14
0.153846153846154 3 14 0.21
0.230769230769231 4 14 0.29
0.307692307692308 5 14 0.36

Figure 3. CUME_DIST and PERCENT_RANK give similar but not identical results.

Listing 3. T-SQL offers several ways to show the distribution
of data.

WITH csrAnnualSales
(SalesPersonlID, OrderYear, TotalSales)

AS
(SELECT SalesPersonID, YEAR(OrderDate),

SUM (SubTotal) AS TotalSales

FROM [Sales].[SalesOrderHeader]

WHERE SalesPersonID IS NOT NULL

GROUP BY SalesPersonID, YEAR(OrderDate))

SELECT SalesPersonlID, OrderYear, TotalSales,

CUME_DIST () OVER
(PARTITION BY OrderYear

July 2015

FoxRockX

One thing this example doesn’t show is what
happens when there are ties in the data. That I
used RANK (rather than RECORD_NUMBER)
when computing the equivalent of CUME_DIST
should give you a hint, though. Both CUME_DIST
and PERCENT_RANK assign the same result
to records with the same sort value. An updated
version of a query that appeared in my May,
2014 article demonstrates. The query in Listing 4
(EmployeeRankByDept.sql in this month’s down-
loads) ranks employees in each department by
how long they’ve been working there. As you can

Page 7

see in the partial results in Figure 4 when multiple
employees have the same start date, those employ-
ees share the same result both for CUME_DIST and
for PERCENT_RANK.

The formula for PERCENT_RANK is much
less obvious. It's one less than rank divided by
one less than the group size, that is (RANK-1)/
(COUNT-1). Subtracting one from the rank ensures

FirstName LastName StartDate Name EmployeeRank
Ovidiu Cracium 2010-12-05 Tool Design 3
Janice Galvin 2010-12-23 Tool Design 4
Stephen Jiang 2011-01-04 Sales 1
Brian Welcker 2011-02-15 Sales 2
Michael Blythe 2011-05-31 Sales 3
Linda Mitchell 2011-05-31 Sales 3
Jillian Carson 2011-05-31 Sales 3
Garrett Vargas 2011-05-31 Sales 3
Tsvi Reiter 2011-05-31 Sales 3
Pamela Ansman-... 2011-05-31 Sales 3
Shu Ito 2011-05-31 Sales 3
José Saraiva 2011-05-31 Sales 3
David Campbell 2011-05-31 Sales 3
Amy Alberts 2012-04-16 Sales 12
Jae Pak 2012-05-30 Sales 13

CumeDist
0.75
-

0.0555555555555556

0. 1111111111111
0.611111111111111
0.611111111111111
0.611111111111111
0.611111111111111
0.611111111111111
0.611111111111111
0.611111111111111
0.611111111111111
0.611111111111111
0.666666666666667
0.777777777777778

PctRank
0.666666666666667
1

0
0.0588235294117647
0.117647058823529
0.117647058823529
0.117647058823529
0.117647058823529
0.117647058823529
0.117647058823529
0.117647058823529
0.117647058823529
0.117647058823529
0.647058823529412
0.705882352941177

Figure 4. Records with the same value for the ordering expression are assigned the same result by both CUME_DIST and

PERCENT_RANK.

Listing 4. Both CUME_DIST and PERCENT_RANK assign the
same value to ties.

SELECT FirstName, LastName, StartDate,
Department.Name,
RANK () OVER
(PARTITION BY Department.DepartmentID
ORDER BY StartDate) AS EmployeeRank,
CUME DIST () OVER
(PARTITION BY Department.DepartmentID
ORDER BY StartDate),
PERCENT RANK () OVER
(PARTITION BY Department.DepartmentID
ORDER BY StartDate)
FROM HumanResources.Employee
JOIN HumanResources.EmployeeDepartmentHistory
EDH
ON Employee.BusinessEntityID =
EDH.BusinessEntityID
JOIN HumanResources.Department
ON EDH.DepartmentID =
Department.DepartmentID
JOIN Person.Person
ON Employee.BusinessEntityID =
Person.BusinessEntityID
WHERE EndDate IS null

This query also helps to understand exactly
what these two functions compute. CUME_DIST is
the fraction of records in the partition with the same
value as or a lower value than the current record
for the ordering expression. So, there are 11 Sales
employees who started on 31-May-2011 or earlier;
that’s divided by 18 (the total number of employees
in the Sales department, which you can't tell from
this figure). That gives the result 0.61111 shown for
all nine employees who started that day.

Page 8

FoxRockX

that PERCENT_RANK always begins with 0. The
SQL Server documentation describes this as the
“relative rank of a row within a group of rows.”

You can also consider this the percentile into
which the record falls. Though I was taught that
you never have a 100" percentile, a little research
shows that some methods for computing percentile
do, in fact, result in a 100" percentile. Note though
that, if there is a tie for the greatest value, then no
record in that partition has PERCENT_RANK =1.

You're likely to want to multiply both
CUME_DIST and PERCENT_RANK by 100 to get
the familiar percentage values we're used to deal-
ing with.

Searching by percentile

The last two analytical functions, PERCENT_CONT
and PERCENT_DISC, let you find the cut-off value
for a particular percentile. Each accepts a decimal
value indicating which percentile is desired; for
example, specify .5 to return the median, that is, the
value at the 50' percentile, and specify .99 to return
the value at the 99" percentile.

The syntax for these functions is a little different
than for any of the other functions you can use with
OVER. The syntax for PERCENTILE_DISC is shown
in Listing 5; the syntax for PERCENTILE_CONT is
identical except, of course, for the function name.

July 2015

Listing 5. The two percentile functions use a different syntax
than the other functions that work with OVER.

PERCENTILE DISC(number)
WITHIN GROUP (ORDER BY order by expression
[ASC | DESC])
OVER ([PARTITION BY <partition by expr>])

As usual, the PARTITION BY clause lets
you break the results up into groups and apply
the function separately to each group. While the
PARTITION BY clause is optional here, if you want
to apply the function to the whole result set as one
group, you still have to include the OVER keyword;
follow it with empty parentheses.

The WITHIN GROUP clause sets the order
used to determine percentiles.

The expression you pass to the function must
be a number between 0 and 1. (That’s a difference
from the other functions that work with OVER.)

The difference between the two functions
is in whether they return only values in the
data (PERCENTILE_DISC—“DISC” stands for
“discrete”) or can interpolate between values
to give a more accurate answer (PERCENTILE_
CONT —"CONT” stands for “continuous”).

The query in Listing 6 (TenurePercentile.sql
in this month’s downloads) shows the number
of people in each department, and their average
tenure in the department in days (that is, how
many days they’ve been in that department). Then,
it computes the 25%, 50" and 75" percentiles for
tenure in the department, using each of the two
methods. Figure 5 shows partial results.

Listing 6. PERCENTILE_CONT and PERCENTILE_DISC
return the value that represents a specified percentile.
WITH csrTenure (DepartmentID, DeptName,

BusinessEntityID, DaysInDept)
AS

(SELECT Department.DepartmentID,
Department.Name AS DeptName,

DeptName

| Document Control ‘5 2214 2198
Engineering 6 2234 1775
Executive 2 1341 900.25
Facilities and Maintenance 7 1904 18175
Finance 10 2210 2190.75
Human Resources 6 2230 2210
Information Services 10 2221 2203.25
Marketing 9 2033 1501
Production 179 2179 2181
Production Control 6 2061 2180.5
Purchasing 12 1777 1737
Quality Assurance 6 2154 2185.5
Research and Development 4 2194 2178
Sales 18 1168 992
Shipping and Receiving 6 2233 22225

EDH.BusinessEntityID,
DATEDIFF (DD, StartDate, GETDATE ())
FROM
HumanResources.EmployeeDepartmentHistory
EDH
JOIN HumanResources.Department
ON EDH.DepartmentID =
Department.DepartmentID
WHERE EndDate IS null)

SELECT DISTINCT DeptName,

COUNT (BusinessEntityID) OVER
(PARTITION BY DepartmentID)
AS DeptSize,

AVG (DaysInDept) OVER
(PARTITION BY DepartmentID)
AS AvgTenure,

PERCENTILE7CONT(.25)
WITHIN GROUP (ORDER BY DaysInDept)
OVER (PARTITION BY DepartmentID)
AS Cont25Pctile,

PERCENTILE CONT (.5)
WITHIN GROUP (ORDER BY DaysInDept)
OVER (PARTITION BY DepartmentID)
AS ContMedian,

PERCENTILE CONT (.75)
WITHIN GROUP (ORDER BY DaysInDept)
OVER (PARTITION BY DepartmentID)
AS Cont75Pctile,

PERCENTILEiDISC(.25)
WITHIN GROUP (ORDER BY DaysInDept)
OVER (PARTITION BY DepartmentID)
AS Disc25Pctile,

PERCENTILE DISC(.5)
WITHIN GROUP (ORDER BY DaysInDept)
OVER (PARTITION BY DepartmentID)
AS DiscMedian,

PERCENTILE DISC(.75)
WITHIN GROUP (ORDER BY DaysInDept)
OVER (PARTITION BY DepartmentID)
AS Disc75Pctile

FROM csrTenure
ORDER BY DeptName

The most obvious use for these functions is
computing medians, but you might use them to
build a table of percentiles for a standardized
test, as well. I can imagine using them in political
discussions about income and taxation, too.

DeptSize AvgTenure Cont25Pctile ContMedian Cont75Pctile Disc25Pctile DiscMedian Disc75Pctile

2216 2234 2198 2216 2234
2576.5 2593.5 1509 2573 2598
13415 1782.75 459 459 2224
1846 1892.5 1809 1846 1902

2230.5 2189 2208 2232
22405 2253 2201 2237 2256
22185 2241.25 2203 2216 2246
2177 2226 1501 2177 2226

2245 2181 2211 2245
2203 2245.75 2176 2194 2257
1848 1873.5 1533 1846 1869
2214 2236.5 2179 2205 2241
22105 2226.5 2115 2199 2222
1357 1357 992 1357 1357
22395 2257.25 2218 2236 2262

Figure 5. Because PERCENTILE_CONT interpolates, the values it returns may not be in the original data. PERCENTILE_DISC always

returns an actual data value.

July 2015

FoxRockX Page 9

Story OVER

I've now looked at each group of functions that
works with OVER through SQL Server 2014
(though there are a few aggregate functions I
haven’t demonstrated, in particular, the ones for
standard deviation and variance). They provide a
wide range of capabilities and make many queries
much simpler than they’d otherwise be.

Author Profile

Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other

organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

