
Page 8 FoxRockX May 2015

Using OVER with analytic
functions, Part 1
With SQL Server 2012 and later, you can pull data from multiple records into a
single result.

Tamar E. Granor, Ph.D.

In	my	 last	article,	 I	 looked	at	 the	OVER	keyword	
with aggregate functions and showed how to do
things like compute running totals and moving
averages. In this article and the next, we’ll look at
the	analytical	functions	that	work	with	OVER;	they	
provide ways to do side-by-side comparisons, com-
pute percentiles and more.
First,	 a	 quick	 review.	 The	 OVER	 keyword	 lets	
you apply a function to a group of records. You
can divide the records addressed by the query
into groups (partitions) and indicate the order in
which the function should be applied. In the May,
2014	issue,	I	showed	how	OVER	lets	you	find	the	
top N records in a group, and more broadly, how
it lets you number records within a group. In the
last	 issue,	 I	 looked	 at	 OVER	 with	 the	 aggregate	
functions	like	SUM	and	AVERAGE,	allowing	you	
aggregate different groups of records in a single
query.

PARTITION	 BY	 sets	 up	 the	 groups	 to	which	
the	function	is	applied.	ORDER	BY	determines	the	
order in which the function is applied.

The	final	group	of	 functions	 that	 can	be	used	
with	 OVER	 are	 analytical	 functions;	 they	 were	
added	 in	SQL	SERVER	2012.	They	can	be	broken	
into	 two	broad	subsets.	The	first	gives	you	access	
to	values	from	other	records	in	the	group:	FIRST_
VALUE	and	LAST_VALUE,	as	their	names	suggest,	
let	 you	 grab	 values	 from	 the	 first	 or	 last	 record	
in a partition; LEAD and LAG, provide access to
records following or preceding the current record.

The second subset looks at percentiles and
distributions:	CUME_DIST,	PERCENTILE_CONT,	
PERCENTILE_DISC,	and	PERCENT_RANK.

We’ll	look	at	the	first	group	in	this	article,	and	
the second group in the next.

Comparing across records
The functions that give you access to different
records in the partition allow you to put data from
multiple records into a single result record without
doing a self-join. Let’s start with LEAD and LAG,
which are the easiest to understand.

Suppose	you’d	like	to	see	the	number	of	units	
sold for each product by year, and include the prior
year’s sales and the next year’s sales in the same
row. That is, you want each record to show three
years’ worth of sales for a single product.

In VFP, you need to use three copies of the
table (or cursor) that contains the totals to do this,
as in Listing 1 (included in this month’s down-
loads	 as	 ThreeYearProductSales.PRG).	 The	 first	
query computes the yearly totals for each product,
and	puts	them	into	a	cursor	called		csrYearlySales.	
Then, the second query joins three instances of
csrYearlySales,	 matching	 records	 on	 ProductID	
and then looking one year back and one year for-
ward, respectively, in the second part of each join
condition. As the partial results in Figure 1 show,
you get the null value for the previous year in the
first	record	for	each	product	and	for	the	following	
year	in	the	last	record	for	each	product.	(Since	the	
Northwind database has data for only three years,
you get exactly three rows per product here, but
if there were data covering a longer span of years,
there’d be more rows for each product.)
Listing 1. To include data from multiple records in the same
table into a single record in the result in VFP, you have to use
a self-join, including the source table once for each record you
want to access.
SELECT YEAR(OrderDate) AS OrderYear,
 ProductID, SUM(Quantity) AS NumSold ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = ;
 OrderDetails.OrderID ;
 GROUP BY 1, 2 ;
 ORDER BY 2, 1 ;
 INTO CURSOR csrYearlySales

SELECT Curr.ProductID, Curr.OrderYear, ;
 Prev.NumSold AS PrevYear, ;
 Curr.NumSold AS CurrYear, ;
 Foll.NumSold AS FollYear ;
 FROM csrYearlySales Curr ;
 LEFT JOIN csrYearlySales Prev ;
 ON Curr.ProductID = Prev.ProductID ;
 AND Curr.OrderYear = Prev.OrderYear + 1;
 LEFT JOIN csrYearlySales Foll ;
 ON Curr.ProductID = Foll.ProductID ;
 AND Curr.OrderYear = Foll.OrderYear - 1;
 ORDER BY 1, 2 ;
 INTO CURSOR csrThreeYears

May 2015 FoxRockX Page 9

You can solve the problem the same way in
T-SQL	 (though	 you’d	 probably	 use	 a	 CTE	 rather	
than a separate query to compute the yearly totals).
But the LAG and LEAD functions provide a better,
more	flexible	solution.

In its simplest form, LEAD lets you include data
from the next record in the partition into the results
for	the	current	record.	Similarly,	the	simplest	form	
of LAG pulls data from the preceding record into
the result for the current record. For example, the
query in Listing 2	 (SalesByYearWithPrevAndFoll.
sql in this month’s downloads) shows the total
number sold for each product by year, and includes
the number sold for the preceding year and the
following year. The CTE computes the total for each
product for each year, and then the main query
pulls the total for the preceding record (LAG), the
current record, and the following record (LEAD).
LAG and LEAD are both partitioned by ProductID,
so we look only at records for the same product.
Figure 2 shows partial results; note that, just as in
the VFP version, the PrevYear column is null for
the	first	record	for	each	product,	and	the	FollYear	
column is null for the last record for each product.

Listing 2. LEAD and LAG let you pull data from other records
in the partition into the results for a record.
WITH csrYearlySales
 (OrderYear, ProductID, NumSold)
AS
(SELECT YEAR(OrderDate) AS OrderYear,
 ProductID,
 SUM(OrderQty) AS NumSold
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 GROUP BY YEAR(OrderDate), ProductID)

SELECT OrderYear,
 ProductID,
 LAG(NumSold) OVER
 (PARTITION BY ProductID
 ORDER BY OrderYear) AS PrevYear,
 NumSold AS CurrYear,
 LEAD(NumSold) OVER

 (PARTITION BY ProductID
 ORDER BY OrderYear) AS FollYear
 FROM csrYearlySales
 ORDER BY ProductID, OrderYear

You can actually pass an expression to LAG
and	LEAD,	not	just	a	single	field	name.	In	addition,	
the two functions have two optional parameters.
The second parameter, called offset in the docu-
mentation, lets you specify which record to use.
It’s an offset from the current position, and defaults
to	1.	So	when	you	omit	the	parameter,	you	get	the	
record immediately preceding or immediately fol-
lowing the current record. But you can jump two
back or six forward, or whatever. The query in
Listing 3 (included in this month’s downloads as
FiveYearProductSales.sql)	shows	five	years’	worth	
of totals for each product in each record, putting
the year the record represents in the middle. As the
partial result in Figure 3 shows, we don’t actually
have	five	years’	sales	data,	so	every	record	contains	
some nulls.

Listing 3. You can specify records more than one record away
from the current record using the optional second parameter to
LAG and LEAD.
WITH csrYearlySales
 (OrderYear, ProductID, NumSold)
AS
(SELECT YEAR(OrderDate) AS OrderYear,
 ProductID,
 SUM(OrderQty) AS NumSold
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON soh.SalesOrderID = sod.SalesOrderID
 GROUP BY YEAR(OrderDate), ProductID)

SELECT OrderYear,
 ProductID,
 LAG(NumSold, 2) OVER
 (PARTITION BY ProductID
 ORDER BY OrderYear) AS Year1,
 LAG(NumSold) OVER
 (PARTITION BY ProductID
 ORDER BY OrderYear) AS Year2,
 NumSold AS Year3,
 LEAD(NumSold) OVER

Figure 1. To get totals for three different years into the same
row of the result, you join three instances of the table that con-
tains the data.

Figure 2. With LAG and LEAD, you can include data from
other records in the same partition.

Page 10 FoxRockX May 2015

 (PARTITION BY ProductID
 ORDER BY OrderYear) AS Year4,
 LEAD(NumSold,2) OVER
 (PARTITION BY ProductID
 ORDER BY OrderYear) AS Year5
 FROM csrYearlySales
 ORDER BY ProductID, OrderYear

While you can get analogous results in
VFP, you’d have to use two more self-joins to
	csrYearlySales	with	the	appropriate	join	conditions.

The third parameter to LAG and LEAD lets
you specify a default value to use when the com-
puted value is null. For example, if you’d prefer to
see zeroes rather than nulls where there’s no data,
you can specify a third parameter of 0 for each LAG
and LEAD in Listing 3.

Looking at first and last records
The second pair of functions that give you access
to	 other	 records	 in	 the	 same	 partition	 is	 FIRST_
VALUE	 and	 LAST_VALUE.	 Though	 they	 sound	
like they’d be exact analogues of each other, they’re
not.	 FIRST_VALUE	 is	 simpler,	 so	we’ll	 look	 at	 it	
first.	(Like	LAG	and	LEAD,	these	functions	let	you	
look at multiple records simultaneously without a
self-join, but writing such code without these func-
tions is a lot more complex.)

FIRST_VALUE	 accepts	 an	 expression	 and	
returns	the	value	of	that	expression	for	the	first	record	
in	the	partition,	according	to	the	specified	order.	For	
example, the query in Listing 4 (PayHistoryWithOrig.
sql in this month’s downloads) shows each
employee’s pay history in chronological order. Each
record shows one pay rate and the date it took effect,
as well as the original pay rate for this employee. We
partition the data on BusinessEntityID, which is the
primary key for Person. In each partition, records
are ordered by the date of the pay change, so the
original	pay	rate	appears	first.	Look	at	the	last	three	
rows in Figure 4 to see an employee with multiple
records.

Listing 4. FIRST_VALUE lets you include data from the first
record in the partition with each record in the result.
SELECT FirstName, LastName,
 Rate, RateChangeDate,
 FIRST_VALUE(Rate) OVER
 (PARTITION BY EPH.BusinessEntityID
 ORDER BY RateChangeDate)
 AS OrigRate
 FROM Person.Person
 JOIN [HumanResources].[EmployeePayHistory]
 EPH
 ON Person.BusinessEntityID =
 EPH.BusinessEntityID
 ORDER BY LastName, FirstName,
 RateChangeDate

While the example in Listing 4 doesn’t seem
terribly useful, a small extension of the idea does.
The query in Listing 5 (PayHistoryWithPctInc.sql
in this month’s downloads) computes the percent-
age increase from the original pay rate and includes
only those records that represent changes in pay in
the result. The CTE here is required in order to be
able	 to	use	 the	computed	 increase	 in	 the	WHERE	
clause.

Listing 5. You can use the analytical functions as part of a larg-
er expression. Here, the original rate found by FIRST_VALUE
divides the new rate to find the percent increase.
WITH csrPayHikes
 (FirstName, LastName, Rate,
 RateChangeDate, OrigRate, Inc)
AS
(SELECT FirstName, LastName,
 Rate, RateChangeDate,
 FIRST_VALUE(Rate) OVER
 (PARTITION BY EPH.BusinessEntityID
 ORDER BY RateChangeDate)
 AS OrigRate,
 CAST((1.00 * Rate/FIRST_VALUE(Rate) OVER
 (PARTITION BY EPH.BusinessEntityID
 ORDER BY RateChangeDate)-1)
 AS DECIMAL(5,2)) AS Inc
 FROM Person.Person
 JOIN [HumanResources].[EmployeePayHistory]
 EPH
 ON Person.BusinessEntityID =
 EPH.BusinessEntityID)

SELECT *
 FROM csrPayHikes
 WHERE Inc <> 0
 ORDER BY LastName, FirstName,
 RateChangeDate

You’d	 expect	 LAST_VALUE	 to	 behave	 the	
same way, except returning the last value in the
partition	 for	 the	 specified	 expression.	 However,	

Figure 3. Using the Offset parameter of LEAD and LAG, you
can reach forward and back an arbitrary number of records.

Figure 4. Here, each employee pay rate record is shown
along with the original pay rate for the employee.

May 2015 FoxRockX Page 11

by default, the function returns the “running last
value,” that is, the one you’re up to. For example,
suppose	 we	 replace	 FIRST_VALUE	 with	 LAST_
VALUE in the query in Listing 4, so we have the
query shown in Listing 6 (included in this month’s
downloads as PayHistoryWithLast.sql). We get
results like those shown in Figure 5. The computed
value	for	CurrRate	is	the	same	as	the	Rate	column,	
because	LAST_VALUE	looks	at	 the	partition	only	
up to the current record.

Listing 6. By default, LAST_VALUE returns the last value of
the expression up to the row we’re on, not the last value in the
partition.
SELECT FirstName, LastName,
 Rate, RateChangeDate,
 LAST_VALUE(Rate) OVER
 (PARTITION BY EPH.BusinessEntityID
 ORDER BY RateChangeDate) AS OrigRate
 FROM Person.Person
 JOIN [HumanResources].[EmployeePayHistory]
 EPH
 ON Person.BusinessEntityID =
 EPH.BusinessEntityID
 ORDER BY LastName, FirstName,
 RateChangeDate

The secret to getting the actual last value in the
partition is to use the window notation discussed in
my last article. Here, we need only the simplest case:
RANGE	 BETWEEN	UNBOUNDED	 PRECEDING	
AND UNBOUNDED FOLLOWING. This tells
LAST_VALUE	 to	 look	 at	 the	 entire	 partition.	
The query in Listing 7 (included in this month’s
downloads as PayHistoryWithOrigAndCurr.sql)
shows the pay rate represented by the particular
record, the original pay rate and the current pay
rate. Figure 6 shows partial results; the last three
records	in	the	figure	demonstrate	the	correct	results	
for an employee with multiple pay rates.

Listing 7. Use the RANGE clause with LAST_VALUE to find
the last value across the entire partition.
SELECT FirstName, LastName,
 Rate, RateChangeDate,
 FIRST_VALUE(Rate) OVER
 (PARTITION BY EPH.BusinessEntityID
 ORDER BY RateChangeDate)
 AS OrigRate,
 LAST_VALUE(Rate) OVER
 (PARTITION BY EPH.BusinessEntityID
 ORDER BY RateChangeDate

 RANGE BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING)
 AS CurrRate
 FROM Person.Person
 JOIN [HumanResources].[EmployeePayHistory]
 EPH
 ON Person.BusinessEntityID =
 EPH.BusinessEntityID
 ORDER BY LastName, FirstName,
 RateChangeDate

As	 with	 FIRST_VALUE,	 you	 can	 use	 LAST_
VALUE as part of a larger expression, so you could
compute, say, the percentage increase from the pay
rate in the current record to the current pay rate
returned	by	LAST_VALUE.

These two functions also let you work around a
limitation of the MIN()and MAX() aggregate func-
tions. For example, you might want to compute the
number of units sold for each product in each year
and include information about the best and worst
years for that product. If all you want to know is the
number sold in the best and worst years for each
product,	 you	 can	 do	 that	 with	 a	 simple	 GROUP	
BY, as in Listing 8	(MinMaxProductsSold.sql	in	this	
month’s downloads).

Listing 8. If all you want is to find a minimum or maximum
value, you don’t need FIRST_VALUE or LAST_VALUE.
WITH csrYearlySales
 (OrderYear, ProductID, NumSold)
AS

(SELECT YEAR(OrderDate) AS OrderYear,
 ProductID,
 SUM(OrderQty) AS NumSold
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON soh.SalesOrderID = sod.SalesOrderID
 GROUP BY YEAR(OrderDate), ProductID)

SELECT ProductID, MIN(NumSold) AS MinSold,
 MAX(NumSold) AS MaxSold
 FROM csrYearlySales
 GROUP BY ProductID
 ORDER BY ProductID

But suppose you want to know which year
was best and which was worst. You can’t just add
OrderYear	 to	 the	 field	 list;	 that	 will	 give	 you	 an	
error.	Specifying	MIN(OrderYear)	doesn’t	give	you	
the	year	for	the	minimum	sold;	it	gives	you	the	first	

Figure 5. Because of the default behavior of LAST_VALUE,
the CurrRate column here is always the same as the Rate
column.

Figure 6. When LAST_VALUE is applied together with
RANGE UNBOUNDED PRECEDING AND UNBOUNDED
FOLLOWING, you get the value from the last record in the
partition.

Page 12 FoxRockX May 2015

Normalization tab
This tab contains information that is more helpful
in understanding the data design rather than warn-
ing about problems. It can be useful to see where
similarly	 named	 fields	 are	 found	 throughout	 the	
data set.

Unique Values tab
The Uniques column contains the number of
unique	values	for	a	field.	In	some	fields,	this	num-
ber should be low, such as gender or type. Other
fields	should	have	a	large	number	of	unique	values,	
such	as	last	name.	And	a	few	fields	will	likely	have	
the same number of values as rows, such as invoice
number	and	the	field	that	contains	the	PK.	

year	in	the	partition.	But	with	FIRST_VALUE	and	
LAST_VALUE,	you	can	get	exactly	what	you	want,	
as in Listing 9 (included in this month’s downloads
as	 SalesByYearWithWorstAndBest.sql).	 Figure 7.
shows partial results.

Listing 9. FIRST_VALUE and LAST_VALUE solve the problem
that MIN and MAX can’t give you the values of other fields in
the record that produced the minimum or maximum.
WITH csrYearlySales
 (OrderYear, ProductID, NumSold)
AS

(SELECT YEAR(OrderDate) AS OrderYear,
 ProductID,
 SUM(OrderQty) AS NumSold
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON soh.SalesOrderID = sod.SalesOrderID
 GROUP BY YEAR(OrderDate), ProductID)

SELECT ProductID, OrderYear, NumSold,
 FIRST_VALUE(NumSold) OVER
 (PARTITION BY ProductID
 ORDER BY NumSold) AS MinSold,
 FIRST_VALUE(OrderYear) OVER
 (PARTITION BY ProductID
 ORDER BY NumSold) AS MinYear,
 LAST_VALUE(NumSold) OVER
 (PARTITION BY ProductID
 ORDER BY NumSold
 RANGE BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING) AS MaxSold,
 LAST_VALUE(OrderYear) OVER
 (PARTITION BY ProductID
 ORDER BY NumSold
 RANGE BETWEEN UNBOUNDED PRECEDING
 AND UNBOUNDED FOLLOWING) AS MaxYear
 FROM csrYearlySales
 ORDER BY ProductID, OrderYear

More to come
In my next article, I’ll look at the NTILE function
and the remaining analytic functions, which all
address percentiles and distributions.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

Figure 7. These results show sales by product by year, along
with the worst and best year for that product.

Familiarity	with	 the	 fields	 together	with	 eye-
balling the rows vs uniques is really the only way
to detect anomalies that should be investigated.

What To Really Do With The Data
Just like my last article, the primary purpose of
this analysis is to become informed about what
you're getting into. A secondary goal is to be able to
explain to your customer what possible situations
you might run into.

Author Profile
Whil Hentzen is an independent software developer based in
Milwaukee, Wisconsin (as opposed to Milwaukee, Minnesota,
as many people think.) His writing has killed many trees over
the years, but none since 2007. He has realized he really sort
of misses it. You can reach him at whil@whilhentzen.com

Continued from Page 16

