
July 2009 FoxRockX Page 13

Use the Toolbox!
This tool does everything the Form Controls toolbar does, but better and
more easily. Plus it gives you much more functionality.

Tamar E. Granor, Ph.D.

Until now, I’ve focused this column on the FoxPro
language, covering commands and functions. In
this issue, I want to take a look at one of my favorite
recent tools, the Toolbox, introduced in VFP 8.
When FoxPro 2.x’s Screen Builder morphed into
the Form Designer in VFP 3, it included three ways
to put controls on forms and classes.

The most basic and visible way to drop controls
is the Form Controls toolbar. By default, it opens
automatically when you open the Form Designer
or Class Designer; to drop a control, you click on
the control in the toolbar, and then click where you
want to put it. This toolbar was so “in your face”
that many people never looked any further.

The Project Manager offers a second approach.
Switch to the Classes tab or expand the Class Li-
braries section in the All tab, then expand the rel-
evant library and you can drag a control and drop
it where you want it. Many VFP developers settled
on this as their standard way of creating forms and
classes.

There was a third choice, as well. The Class
Browser is a separate tool actually written (by Ken
Levy) in VFP code. It lets you open one or more
class libraries (or even an entire project) and explore
their contents. You can drop a control onto a form
or class by clicking the class in the Class Browser,
then dragging the icon in the upper left corner to
the position where you want it. (In fact, that ap-
proach even works on live forms, so you can do the
parlor trick of creating a blank form, dropping live
controls onto it, and then using those controls.)

While all three techniques work, each of them
has quirks and drawbacks, things that make it clum-
sy or inefficient or cases it doesn’t handle. I won’t
catalog all of the issues with the old tools here, but
I will list the main ones that bother me.

With the Form Controls toolbar, the biggest is-
sues relate to how you get your own class librar-
ies shown. The toolbar can show either the native
VFP controls, all registered ActiveX controls, or the
controls in a single class library. Although the tool-
bar does remember how you left it, when you close
VFP and reopen it, any class libraries other than the
one currently displayed are removed from the list.

You can register class libraries on the Controls
page of the Tools | Options dialog to make them
available in every VFP session, but there’s no easy
mechanism for setting up different lists of libraries
for different projects.

Another problem is that, by default, all con-
trols based on the same base class look the same,
and you have to rely on their tooltips to figure out
which is the one you want. In my experience, the
order changes when you edit classes in the library,
so you can't even rely on their position. (You can
change the icon for a class using the Class Info dia-
log that's available from the Class Designer, but in
my experience, very few people ever do so.)

All three tools share another big weakness;
there’s no easy way to create new forms based on a
custom form class. For me, this is a fairly common
activity when developing and the workarounds for
it (registering a form class in the Tools | Options
dialog, or using the CREATE FORM command
with the AS clause) are clumsy; registering a form
class in the Tools| Option dialog doesn’t address
the idea that you may need to work with several
form classes.

Enter the Component Gallery
VFP 5 brought the Component Gallery, an alternate
face for the Class Browser that offers a way to or-
ganize classes and much more into catalogs based
on your own organizational structure rather than
where they live or what project they belong to. It’s
an incredibly flexible tool, with tremendous exten-
sibility built in.

However, it’s also hard to understand and use
and never gained much traction in the community.

The Toolbox—Easy to use and
flexible
So, when the Toolbox was introduced in VFP 8, I
was thrilled to find that it covers pretty much every
use case I have. The Toolbox organizes “tools” (just
about anything you want to include) into categories,
which you can define. Each category contains items,
which can be dropped onto forms and classes, or

Page 14 FoxRockX July 2009

into code windows, or into other kinds of windows
(even windows belonging to other applications).
While each type of item has default behavior for
what happens when you drop it, you can specify
different behavior. The Toolbox has five types of
items built in, but you can define other item types
fairly easily.

The Toolbox addresses the weaknesses of the
other tools. Creating new forms from a form class
is as simple as right-clicking on the class and choos-
ing Create Form. Classes are listed in the Toolbox
using a name you specify (by default, the name of
the class). The Toolbox includes a filter mechanism,
so you can organize its contents by project or any
other way you want; a category can belong to mul-
tiple filters.

In other words, the Toolbox finally provides an
easy, flexible way to put controls onto forms and
classes. In fact, it offers much, much more.

Toolbox basics
To run the Toolbox, start it from the Tools menu or
the standard toolbar, or run it with the command
DO (_Toolbox). When it initially opens, it looks
more or less like Figure 1. “More or less” because,
first, I’ve changed from the default font and size,
and second, because this is actually a filtered view
of my complete Toolbox, showing only the items
that are there by default.

Figure 1. The basic Toolbox. Here, the font has been changed
and a filter applied to show only the built-in items.

The bars you see are the built-in categories.
Click on a category to open it and see the items
within. In Figure 1, the Favorites category is open,
but it’s empty. In Figure 2, the category My Base
Classes has been clicked. (Figure 1 was captured on
a Vista machine, while Figure 2 comes from Win-
dows XP.)

Figure 2. When you click a category, it opens to show the items
within.

There are two ways to put a control, whether
a native VFP control or a custom class, onto a form
or another class. With the form or class open in the
appropriate designer, you can either drag and drop
from the Toolbox or double-click the control class.
If you drag and drop, the control, of course, lands
where you drop it. If you double-click, it goes in the
upper-left corner.

One of the cool features of the Toolbox is that
you can also drag and drop classes into code win-
dows. When you do so, you generate a CreateOb-
ject() or NewObject() call. For example, dragging
the Check Box class from the My Base Classes cate-
gory into a code window results in this line of code
(as a single line without the continuation):
_checkbox = NEWOBJECT("_checkbox", ;
 "_BASE.VCX")

While you’d rarely want to instantiate a check-
box that way, this approach is very nice for classes
that perform control tasks. For example, the VFP
Foundation Classes category includes the Registry

July 2009 FoxRockX Page 15

class from the FoxPro Foundation classes. Drag that
to a code window and you see (again, on a single
line):
registry = NEWOBJECT("registry", ;
 "REGISTRY.VCX")

Putting controls into containers
One of the tasks that’s aggravating (if not actually
difficult) with the older tools is putting controls in-
side a container, such as a page or grid. You have to
click on the container, then right-click and choose
Edit, and then drop the control. With the Toolbox,
it’s a piece of cake.

To add a control to a container, simply drag it
and drop it onto the container. The container doesn’t
have to be selected. Figure 3 and Figure 4 show the
process of dropping a listbox onto a page. Note that
the page is not initially selected. Once you drop the
control, the new control is selected.

Figure 3. To add a control to a container like a page, just drag
and drop onto the container. You don’t have to select the con-
tainer first.

Figure 4. Once you drop a control onto a container, it becomes
the selected object.

You can also add controls to containers using
double-click. In that case, the appropriate container
must be selected, but you don’t have to right-click
and choose Edit. The new control is placed in the
upper-left corner of the container (though you can
actually change the default). In this case, the newly
added control is not selected. Instead, the container
remains selection, so you can add a series of con-
trols quickly.

While this technique is handy for pages and
containers and so forth, where it really shines is
with grids. Getting the right controls into grid col-
umns is tedious using any of the older tools. The
Toolbox makes it easy.

Once you add a grid to a form or class, select the
grid, and you can start adding controls by double-
clicking on them or dragging and dropping them.
There are three distinct behaviors, depending on
the situation.

If you double-click on a control in the Toolbox
with a grid selected, you’re prompted to add a col-
umn to the grid to hold that control, as in Figure 5.
If you drag and drop a control to an empty space in
the grid, you see the same behavior.

Figure 5. You can add a new column to a grid by double-click-
ing on the appropriate control in the Toolbox.

But if you drag and drop a control into an ex-
isting column, the behavior you see depends on
what’s already there. If the column contains a text-
box named Text1, you can replace that control with
the one you’re dropping, as in Figure 6. (You con-
trol whether that message appears, through a Tool-
box option.)

Figure 6. When you drop a control into a column containing
only a textbox named Text1, you can remove the textbox at the
same time.

Page 16 FoxRockX July 2009

If the column is empty or contains any other
controls, the control you drop is added to the col-
umn. You can determine through one of the Tool-
box’s options whether the newly added control be-
comes the CurrentControl for the column.

Adding your own classes
All this functionality wouldn’t be very useful if you
could only apply it to the items that come in the
Toolbox. But of course, you can add your own cate-
gories and your own classes. While you don’t have
to add categories to add classes, you probably will
want to, so I’ll show you how to do that first.

A category is just a named collection of items.
By default, the Toolbox supports five types of cat-
egories, though any item can actually go into any
type of category. For now, we’ll look only at the
General type of category, which is intended pri-
marily for VFP objects.

To add a new category, right-click on the Tool-
box and choose Add Category. The Add Category
dialog (Figure 7) appears.

Figure 7. Use this dialog to add a new category. For VFP
classes, choose the General category type.

Give the category a name. I tend to
use an abbreviation for the relevant proj-
ect or client, followed by a description of
the type of items I’ll put in this category.
So, for example, for a project abbreviated
HAP, I have categories HAP Base, HAP
Forms, HAP Controls, and so forth. When
you click OK, the new category is added at
the bottom of the Toolbox. (You can con-
trol the display order of categories in the
Customize Toolbox dialog.) Of course, the new cat-
egory is empty.

To add classes, click on the Category name to
open it. Then right-click and choose Add Class Li-
brary, as in Figure 8. In the Add Class Library dia-
log that appears (Figure 9), point to the class library
whose classes you want to add.

Figure 8. To add classes to the Toolbox, right-click in the ap-
propriate category and choose Add Class Library.

Figure 9. Use this dialog to specify the class library you want to
add to the Toolbox.

Once you’ve added a class library, all of its
classes are available in the specified category. You
can actually control whether particular classes
show in the Toolbox. You can hide an individual
class by right-clicking on it, selecting Properties,
and then checking the Inactive checkbox in the dia-

July 2009 FoxRockX Page 17

log that appears, as in Figure 10. It’s a good idea to
hide abstract classes that shouldn’t be used. (The
same dialog lets you change the name that appears
for the class in the Toolbox. Modify the Item name
to control what you see in the Toolbox.)

Figure 10. To hide a particular class, check the Inactive check-
box in the class’s Item Properties dialog. To change the name
displayed in the Toolbox, modify Item name.

Hiding classes one by one could get pretty te-
dious. Fortunately, there’s another way. Right-click
on the Toolbox and choose Customize Toolbox. In
the Customize Toolbox dialog (Figure 11), choose
your category, and you can then uncheck which-
ever classes you want to hide.

This dialog also offers the ability to change the
name that appears for each class. Note that doing
so doesn’t change the class’s name, just what you
see for it in the Toolbox.

You can also re-order the classes within a cat-
egory, either alphabetically or to an order
you prefer, using the button bar that ap-
pears above the list of classes.

Making sure the tedious
happens
There are various properties that need to
be set just about every time you drop a
control onto a form or class. You always
should change the name of the control
from the default. For some control types,
you need to specify a caption, as well.
While you’re not likely to ship a form
without providing the right caption, it’s
easy to leave the default name.

The Toolbox offers an easy way to
make sure you specify the name for each
control you drop. First, you can actually
specify the “base” name used when you
drag and drop. The Object name field in

the Item Properties dialog (Figure 10) is used for
that purpose. When you drop a control onto a form
or class, a number is added to the object name to
provide the control’s name.

However, there’s a better choice. You can actu-
ally get prompted for the name as part of adding
the control. The Toolbox has the ability to set in-
stance properties, that is, properties of the control
you’re adding, much the way a Builder does.

Figure 11. The Customize Toolbox dialog offers many ways to modify what you see in the Toolbox. Among them are hiding individual
classes and changing the name that appears for a class.

Page 18 FoxRockX July 2009

To set it up, click the Add button in the Item
Properties dialog. The Set Object Property dia-
log (Figure 12) appears. In the dropdown, choose
the property you want to set, in this case, Name.
In the textbox, specify the value to set that prop-
erty to. What makes this ability so useful is that the
“value” doesn’t have to be a constant. In this case,
it’s an expression that calls the InputBox() function,
so you can enter the name you want. Note that the
parentheses around the expression are required in
order to have the expression evaluated before as-
signing it:
(inputbox("Checkbox name", ;
 "Adding checkbox", "chk"))

Figure 12. The Set Object Property dialog lets you specify
properties to be modified as you add the control to a form or
class.

When you drop this checkbox class onto a form
or class, either by drag or drop or by double-click-
ing, you see the dialog in Figure 13. Type the name
you want (or use right-arrow to unhighlight “chk”
and then add the rest of the name) and the control
is added with that name. No need to go to the Prop-
erty Sheet to specify the control’s name.

Figure 13. After you set things up as in Figure 12, this dialog
appears each time you add the class to a form or class.

You can use the same trick to set the Caption as
you add the control and, in fact, you can set many
properties this way. However, don’t use this ability
as a substitute for subclassing. If you need a control
that always has certain properties set to certain val-
ues, create a class with those properties set.

Creating forms
In my projects, I tend to have a few different form
classes. Typically, there’s a “base” form class, then
subclasses of that one for dialogs, for data entry
forms, and for reporting. (Sometimes, of course, ad-
ditional subclasses are called for, as well.) The older
tools don’t provide any way of creating a new form
based on a class. You have to work from the Com-
mand Window.

With the Toolbox, it’s easy. Right-click on the
form class and choose Create Form, as in Figure 14.
The Form Designer opens with the new form based
on the specified class.

Figure 14. Creating a form based on a class is a simple opera-
tion in the Toolbox.

Filtering
One of my issues with the Form Controls toolbar is
that all registered class libraries show up, making it
hard to be sure you’re using the right classes for a
given project.

The Toolbox lets you filter what’s shown, so
that you can look at only the classes you should for
a given project. A filter contains a subset of the cat-
egories defined.

To create a filter, right-click on the Toolbox and
choose Customize Toolbox. Then click on Filters in
the General section of the left-hand list. Then, click
New Filter on the button bar at the top. In the Filter
name textbox, specify the name for your filter and
click Update to update it in the list below.

Then, check each category you want to include
in this filter. Figure 15 shows the dialog after creat-
ing and naming a new filter and adding a category
to it.

July 2009 FoxRockX Page 19

Any category can appear in as many filters as
you want, and you can define many filters. I use
one filter for the default Toolbox contents (impor-
tant to me because I do demonstrations of the Tool-
box), and one for each project I’m working on.

Once you’ve created filters, a Filter item ap-
pears in the Toolbox’s context menu; it has a sub-
menu listing all the defined filters. Choose one and
the Toolbox shows only the categories included in
that filter. Figure 16 shows the Toolbox after selec-
ting the newly-defined FoxRockX filter.

Figure 16. When you apply a filter, only the categories in that
filter appear. This makes it easier to see what you have, and
helps to use the right classes for each project.

But wait, there’s more!
What I’ve covered in this article is just a little bit of
what the Toolbox offers. Covering it all would take
many, many more pages. If you’ve never worked
with the Toolbox, I strongly urge you to open it up
and spend some time just playing, to see what you
can do and whether it’s a comfortable tool for you.

There are a couple of additional resources for
the Toolbox available. The chapter I wrote on the
Toolbox for the book “What’s New in VFP 8” is
available at http://www.hentzenwerke.com/sam-
plechapters/zsamplechapters.htm. A white paper
by Beth Massi showing how to extend the Toolbox
is at http://msdn.microsoft.com/en-us/library/
ms965183.aspx.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s So-
lutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. She currently focuses on working with
other developers through consulting and subcontrac-
ting. Tamar is author or co-author of ten books inclu-
ding the award winning Hacker’s Guide to Visual Fox-
Pro, Microsoft Office Automation with Visual FoxPro
and Taming Visual FoxPro’s SQL. Her latest collabo-
ration is Making Sense of Sedna and SP2, coming out
this year. Her books are available from Hentzenwerke
Publishing (www.hentzenwerke.com). Tamar is a Micro-
soft Support Most Valuable Professional. In 2007, Tamar
received the Visual FoxPro Community Lifetime chieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

Figure 15. Filters let you show only a subset of the defined categories.

