
January 2016
Number 48

 1 Know How...
 Use MDots for speed,
 not just for correctness
 Tamar E. Granor, PhD

 5 Deep Dive
 Creating a Plug-in Architecture for
 Your Applications, Part 2
 Doug Hennig

 14 Future
 Automating the Filling In Of A PDF -
 Reprise, Part 2
 Whil Hentzen

 18 VFPX
 Thor Option Dialogs
 Rick Schummer

Use MDots
for speed,
not just for
correctness
Prefi xing variable references with
“m.” doesn’t just make your code
unambiguous; it makes it faster.

Tamar E. Granor, Ph.D.

There may be no topic on which VFP developers as
a group feel more strongly than whether or not to
prefi x all references to variables with “m.” in order
to prevent ambiguity. It may be time for that argu-
ment to end, though, because it turns out that using
mdots makes your code run faster, too.
From its earliest days, FoxPro has given preference
to fi eld names in expressions. When an expression
includes a name that’s both a fi eld of the table open
in the current work area and a variable, unless
you tell it otherwise, FoxPro uses the fi eld. That is,
when you have code like Listing 1, VFP fi rst looks
for fi elds named nHeight and nWidth. Only if it
can’t fi nd them does it decide you must have meant
variables.

 Listing 1. When names are used in an expression, VFP gives
preference to fi elds.
nArea = nHeight * nWidth

If you want to use the variable rather than a
fi eld of the same name, you can precede it with the
letter “m” and a period. The combination is typi-
cally called “mdot” by VFP developers. Listing 2
shows the previous example with variables clearly
indicated.

 Listing 2. Mdots make it clear that you mean a variable.
nArea = m.nHeight * m.nWidth

Page 2	 FoxRockX� January 2016

In this example, mdot isn’t needed for nArea
because only variables can be assigned a new value
using the equals sign.

Naming conventions as a
solution
Because of this behavior, many VFP developers
have adopted naming conventions that are meant
to ensure that they never have variables and fields
with the same name. The most common notation
(recommended in the VFP Help file and generally
referred to as “Hungarian”) uses a scope letter (“l”
for local, “p” for private, “g” for global/public)
followed by a type letter (“c” for character, “n” for
numeric, etc.) at the front of every variable name. In
that notation, fields get a type letter, but no scope
indicator. Using this notation, a field representing
height would be nHeight, but a variable for height
would be lnHeight.

The problem with relying on a naming conven-
tion is that VFP doesn’t know about it and it doesn’t
prevent all conflicts. For example, it’s not impos-
sible to imagine having a field named lOrange and
a variable named loRange. While these look differ-
ent to a human reader, to the VFP engine, they’re
exactly the same and the field will be used any time
there’s ambiguity.

By now, you can probably tell that I’m in the
“always use mdots” camp, and if you’re firmly in
the “no mdots” camp, no argument I can make
about how VFP works or the potential for errors is
likely to convince you.

MDots are faster
However, it also turns out that using mdots makes
your code run faster. How much faster depends on
the number of variable references and the number
of fields in the table open in the current workarea.

I recently tested on two different comput-
ers, using two different programs, one with just a
few variable references and one with many more.
In each case, I also tested for different numbers of
fields in the current workarea, starting with no table
open, then with a table (actually, a cursor) with five
fields, then one with 10 fields, and so on all way up
to 200 fields in the table in the current work area.

Given VFP’s preference for fields, I wasn’t
surprised to see that mdot was faster and that the
more fields in the table in the current work area, the
greater the advantage of mdot.

Listing 3 shows the first test program, the
one with fewer variable references. The code uses
height and width variables to compute perimeter
and area. The computations are performed in a
loop that runs for five seconds; there are a total of
six references to variables in the loop and the com-
putations.

Listing 3. This program compares use of variables with mdots
to use of variables without mdots. The block being tested con-
tains six variable references.
* Compare speed with and without mdot

#DEFINE SECONDSTORUN 5

LOCAL nCase1Start, nCase1LoopEnd,
nCase2LoopStart, nCase2LoopEnd
LOCAL nCase1Passes, nCase2Passes
LOCAL nLength, nWidth, nPerimeter, nArea

* Test multiple cases from no table open
* to table with many fields open.
* Store results in a cursor in a different
* workarea.

CREATE CURSOR csrMDotSpeeds
 (nFields N(3), nNoMDots I, nMDots I)
SELECT 0

LOCAL nFields, nField, cFieldList

* Initialize variables for calculations
nLength = 27.3
nWidth = 13.7

FOR nFields = 0 TO 200 STEP 5
 IF m.nFields <> 0
 cFieldList = ''
 FOR nField = 1 TO m.nFields
 cFieldList = m.cFieldList + "cField" + ;
 TRANSFORM(m.nField) + " C(5), "
 ENDFOR
 cFieldList = TRIM(m.cFieldList, ", ")

 CREATE CURSOR csrDummy (&cFieldList)
 ELSE
 SELECT 0
 ENDIF

 * Now do the test

 nCase1LoopStart = SECONDS()
 nCase1LoopEnd = m.nCase1LoopStart + ;
 SECONDSTORUN
 nCase1Passes = 0

 DO WHILE nCase1LoopEnd > SECONDS()
 nCase1Passes = nCase1Passes + 1

 nPerimeter = 2*nLength + 2*nWidth
 nArea = nLength * nWidth
 ENDDO

 nCase2LoopStart = SECONDS()
 nCase2LoopEnd = m.nCase2LoopStart + ;
 SECONDSTORUN
 nCase2Passes = 0

 DO WHILE m.nCase2LoopEnd > SECONDS()
 nCase2Passes = m.nCase2Passes + 1

 nPerimeter = 2*m.nLength + 2*m.nWidth
 nArea = m.nLength * m.nWidth

 ENDDO

 INSERT INTO csrMDotSpeeds
 VALUES (m.nFields, m.nCase1Passes, ;
 m.nCase2Passes)

 IF m.nFields <> 0
 USE IN csrDummy
 ENDIF
ENDFOR

RETURN

January 2016	 FoxRockX� Page 3

The results of this test on the two different
machines were quite similar. With no table open in
the current work area (the 0 case), the version with-
out mdots was very slightly faster. After that, how-
ever, the mdots version was always faster. With
30 fields in the table, the mdots version completed
more than 25% more iterations; with 50 fields, the
mdots version completed 50% more iterations. By
the top end of the test, 200 fields, the mdots version
made 2.7 times as many passes.

The number of iterations completed by the
code using mdots was remarkably stable. For a
given machine, the difference between the maxi-
mum and the minimum was less than .02% of the
maximum value.

On the other hand, the number of iterations
completed by the code without mdots descended
pretty steadily. With 200 fields, only about a third
as many iterations were completed as with no open
table.

It’s important to note that we’re talking about
millions of iterations in five seconds, so the effect is
small for any given variable reference. However, in
an application, you likely have thousands or tens
of thousands of variable references; in a typical
application, it’s likely that most of them occur with
a table in the current area.

A larger test
I wanted to see the difference mdot makes in a pro-
gram with many more variable references than the
perimeter and area example. To do so, I adapted
a piece of code from a client application. The core
of the code is a function that determines whether a
specified point is “near” a specified line. It accepts
four parameters, a line, a point (in the form of row
and column coordinates), and a tolerance. The toler-
ance indicates how far from the line something can
be and still be considered “near.” The actual code
isn’t important, but the function contains nearly 60
potentially ambiguous variable references.

The test, structured the same way as the previ-
ous test, is shown in Listing 4.

Listing 4. This code tests the speed of a program with more
than 50 references to variables with and without mdots.
* Compare speed with and without mdot

#DEFINE SECONDSTORUN 5

LOCAL nCase1Start, nCase1LoopEnd, nCase2Loop-
Start, nCase2LoopEnd
LOCAL nCase1Passes, nCase2Passes

* Test multiple cases from no table open
* to table with many fields open.
* Store results in a cursor in a different
* workarea.

CREATE CURSOR csrMDotSpeedsLarge ;
 (nFields N(3), nNoMDots I, nMDots I)
SELECT 0

LOCAL nFields, nField, cFieldList
LOCAL oLine AS Line

oLine = CREATEOBJECT("Line")
oLine.Left = 27
oLine.Top = 13
oLine.Height = 152
oLine.Width = 53

FOR nFields = 0 TO 200 STEP 5
 IF m.nFields <> 0
 cFieldList = ''
 FOR nField = 1 TO m.nFields
 cFieldList = m.cFieldList + "cField" + ;
 TRANSFORM(m.nField) + " C(5), "
 ENDFOR
 cFieldList = TRIM(m.cFieldList, ", ")

 CREATE CURSOR csrDummy (&cFieldList)
 ELSE
 SELECT 0
 ENDIF

 * Now do the test

 nCase1LoopStart = SECONDS()
 nCase1LoopEnd = m.nCase1LoopStart + ;
 SECONDSTORUN
 nCase1Passes = 0

 DO WHILE nCase1LoopEnd > SECONDS()
 nCase1Passes = nCase1Passes + 1

 IsPointNearLineNoMDot(oLine, 55, 45, 1)
 IsPointNearLineNoMDot(oLine, 100, 27, 2)
 IsPointNearLineNoMDot(oLine, 0, 0, 1)
 IsPointNearLineNoMDot(oLine, 500, 7, 3)
 ENDDO

 nCase2LoopStart = SECONDS()
 nCase2LoopEnd = m.nCase2LoopStart + ;
 SECONDSTORUN
 nCase2Passes = 0

 DO WHILE m.nCase2LoopEnd > SECONDS()
 nCase2Passes = m.nCase2Passes + 1

 IsPointNearLineMDot(m.oLine, 55, 45, 1)
 IsPointNearLineMDot(m.oLine, 100, 27, 2)
 IsPointNearLineMDot(oLine, 0, 0, 1)
 IsPointNearLineMDot(oLine, 500, 7, 3)
 ENDDO

 INSERT INTO csrMDotSpeedsLarge ;
 VALUES (m.nFields, m.nCase1Passes, ;
 m.nCase2Passes)

 IF m.nFields <> 0
 USE IN csrDummy
 ENDIF
ENDFOR

By now, it should be no surprise that the more
fields in the table open in the current work area, the
greater the advantage of the version with mdots.
In my tests, the mdot version ran about 25% more
times at 70 fields in the work area and about 50%
more times with 150 fields.

I suspect the reason the difference isn’t as
extreme as the earlier example is that there’s a
lot more code that isn’t variable references in this
example. That is, the overall code is more complex.
(In fact, while the earlier example managed mil-
lions of passes in five seconds, the larger example
completed only tens of thousands.)

Page 4	 FoxRockX� January 2016

To get a better sense of the difference between
the two tests, I computed a rough “time per
variable reference” for each. Specifically, I did the
calculation in Listing 5, dividing the five seconds
of the test by the product of the number of variable
references and the number of passes completed. Of
course, this is only an approximate time per variable
reference because there’s other code in each test.
However, it let me do a comparison between the
two tests.

Listing 5. This equation computes an approximate “time per
variable reference.”
Time = TestTime/((# of variables) * passes)

What I found was that the second, more com-
plex, test took about an order of magnitude longer
for each reference than the simpler test. Again,
that’s likely a reflection of the additional code in the
more complex case.

What about arrays?
The code that determines whether a point is near a
line uses a couple of arrays in its calculations. Since
a reference to an array element can’t be mistaken for
a reference to a field, I wondered whether it makes
a difference to use mdots on those references.

I tested by adding a third case to the larger test.
It’s structured the same way as the two tests in List-
ing 4, but calls a third version of IsPointNearLine
that has mdots on references to scalar variables, but
not on references to array elements.

I found only a tiny difference between this ver-
sion and the one with mdots on all variable refer-
ences including arrays. Most of the time (66 out of
82 cases), the one without mdots on array references
was faster, but sometimes the one using mdots on
array references was faster. That suggests that VFP
is smart enough to not look (or to not look very
hard) for a field when given an array reference.

The code for testing all three cases is
included in the downloads for this session
as UseMDotLarge.PRG, along with the three
versions of the function to determine whether
a point is near a line. They’re included in this
month’s downloads as IsPointNearLineNoMDot.
PRG, IsPointNearLineMDot.PRG and
IsPointNearLineMDotNotArrays.PRG

A few words about timing tests
Testing in the Windows environment is inherently
flawed. Between Windows itself and various ser-
vices that are always running, any one test result
might be inaccurate.

There are two things you can do to get better
results. First, before testing, turn off anything you
can that might interfere, such as an email client, on-
demand virus scanning, and so forth. If you don’t
need a network for the test, consider disconnecting.

Second, perform more than one test for each
case. That advice is also important because VFP
caches data, so the first time you run a process that
uses DBFs, it’s likely to take longer than subsequent
runs.

As I mentioned earlier, I did my testing on two
different machines. In both cases, I made sure that
Outlook and my Twitter client were closed. When
a test was running, I didn’t do anything else with
that computer, not even touch the keyboard or
move the mouse. In addition, over the course of
writing, I ran each of my tests a number of times.

Even with these safeguards, test results should
be seen more as an indicator than as a definitive
answer. In this case, because the difference between
the mdots and no mdots results are so large, it’s
safe to assert that mdots makes a difference. On
the other hand, the difference between mdots on
all variable references and mdots only on non-
array element variable references is small enough
to only hint at the answer. More testing in a more
controlled environment is needed to confirm that
result.

Just use mdots
As I said at the beginning, I’m already on the mdots
bandwagon. I’ve been bitten too many times by
code using a field when I meant a variable and I
don’t want to worry about that ever again. In addi-
tion, I work often on code originally written by oth-
ers, so even if I adopted a strict naming convention,
much of the code I touch likely wouldn’t be using
it.

But even if you truly believe your naming con-
vention will protect you from that problem, the fact
that omitting mdots makes your application slower
should make you rethink your choice.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

