
June, 2006

Advisor Discovery

Use BindEvent() to keep things in synch

By Tamar E. Granor, technical editor

I've been experimenting with BindEvent() since it was added in VFP 8;
I've even written about it (see the July, 2005 issue). But I recently

found a use for the function that helped me see how it could be an
integral part of an application and not just a way to add functionality

after the fact.

I wanted buttons on a form to be properly enabled and disabled as

soon as a user acts. It's easy to reset the Enable property when the
user moves off a control, but I wanted a way to change the property

with the first keystroke, so that for example, the Save button is
enabled only when the user has actually changed the record, not just

because he asked for a new record.

My first attempt set the KeyPreview property of my data entry form

class to .T. and then checked in the form's KeyPress for keystrokes

that indicated a change of data. It required a complete list of
navigation keystrokes, so that pressing those wouldn't change the

button status. I got this version working, but it didn't handle using the
mouse for data entry or situations like using an ellipsis button to

choose a file. The more I looked at getting it totally right, the uglier
the problem got.

At this point, I discussed the problem with Doug Hennig, who pointed
me at the solution. Before I show the details, let's take a look at event

binding in VFP.

BindEvent() Refresher

BindEvent() lets you hook a method to an event. You can specify that

when a certain event fires, another method besides the event method
should be called. The example most people use to demonstrate the

technique looks something like this:

PUBLIC oHandler

oHandler = NEWOBJECT("Handler")
BINDEVENT(_SCREEN, "Resize", oHandler, "HandleResize")

DEFINE CLASS Handler AS Custom

PROCEDURE HandleResize

WAIT WINDOW "Resizing main window" NOWAIT
RETURN
ENDPROC

ENDDEFINE

In this code, the Resize event of _SCREEN is bound to the
HandleResize event of the oHandler object, which is based on the

custom Handler class. After you run this code, when you resize the
main VFP window, the WAIT WINDOW appears. (Issuing CLEAR ALL or

RELEASE oHandler to turn this behavior off.) This example is included
on this month's Professional Resource CD as BindResize.PRG.

Like many simple examples, this code isn't terribly useful, but it
demoes well. With a little more work, you can use the same idea to

keep an image centered on the main VFP window (or a form) as it's
resized.

BindEvent() has four required parameters and one optional parameter.
Here's the syntax:

BINDEVENT(oEventSource, cEvent,
 oEventHandler, cHandlerMethod [, nFlags])

The first two parameters specify the bound event; you supply a

reference to the object and the name of the event. The next two
parameters specify the event handler (or "delegate"); again, you

provide a reference to the object and the name of the method. You
can read the function call as a sentence: When the cEvent method of

oEventSource fires, call the cHandlerMethod of oEventHandler as well.

The nFlags parameter deals with a couple of variations. It's an additive

value that lets you specify several things with a single parameter.

The first issue is whether the bound event or the handler runs first. By

default, the handler code runs first. Add 1 to nFlags to run the bound
event's method first and then the event handler's method.

The second issue is a little trickier to understand. VFP lets you call an

event method directly with code like ThisForm.cmdSave.Click()
(though such calls are bad form). You can determine whether code

bound to such an event fires on a programmatic call or not. By default,
such a call does also run the event handler method; add 2 to nFlags to

prevent such calls from executing the event handler method.

The reason for the distinction is that direct calls to an event method

like Click don't actually fire the event. They run the code contained in
the event method, but not the built-in VFP code associated with the

event. For example, when you call a button's Click method, the code
there runs, but the button doesn't go down and back up visually.

One final point about BindEvent(), though it's not relevant to this
particular problem. You can actually bind to properties as well as

events. That is, the cEvent parameter can actually be the name of a
property. When you bind to a property, the event handler method fires

every time that property's value changes. This is similar to having an
Assign method for the property, but without the need to subclass.

In addition to providing another way to respond to VFP's events, the
event binding mechanism also provides a way to create and fire

custom events. The RaiseEvent() function lets you indicate that an
event is firing, even if it's a custom method of a custom object. The

syntax is:

RAISEEVENT(oEventSource, cEvent [, uParameters])

Events fired by RaiseEvent() call any handler code regardless of the

nFlags setting used in BindEvents(). You can also use RaiseEvent() on
native events; as with custom methods, handler code is always called.

However, even RaiseEvent() doesn't fire built-in VFP code for the
native event.

Back to the problem

To solve the problem of properly enabling and disabling buttons, I
made a few changes. First, I eliminated the KeyPress-related code

entirely.

I added a custom AnyChange method to every control class with a

ControlSource property and put this code in Both InteractiveChange
and ProgrammaticChange:

RaiseEvent(This, "AnyChange")

Since there might be controls that aren't involved in the record itself

and thus shouldn't determine the status of the buttons, I also added a
custom property, lNoteChange, to each of the control classes with

AnyChange methods.

Next, I added an AnyChange method to the base form class. Then I

added a method called BindControlEvents and put the following code in
it:

LOCAL oControl

FOR EACH oControl IN This.Objects
 IF PEMSTATUS(oControl, "lNoteChange", 5) AND ;
 oControl.lNoteChange
 BINDEVENT(oControl, "AnyChange", This, "AnyChange")
 ENDIF
ENDFOR

So the AnyChange method of every control on the form that has

lNoteChange set to .T. fires the form's AnyChange method. The Init
method calls BindControlEvents.

With this code in place, any time there's a change to a control on the
form, the form's AnyChange method fires. This is essentially a

generalization of the mechanism that KeyPreview provides for
KeyPress.

In my situation, I put a method call in AnyChange to the form's
custom UpdateEnabled method that evaluates the current situation

and enables and disables controls.

This month's Professional Resource CD contains a class library
(Base.VCX) containing the necessary code for this technique, as well

as an example form (Customers.SCX) that demonstrates it. The form
is a simple editing form, but the buttons enable and disable based on

the current state, as soon as you start typing. Figure 1 shows the form
after clicking the New button; Figure 2 shows it after something has

been typed.

Figure 1. New record—After clicking New, the new record is ready to edit, but
there's nothing worth saving, so Save and Revert are disabled.

Figure 2. Changed record—Once there's some data to save, the Save and Revert
buttons come alive. In your applications, you might chose to be more picky about
what's enough to enable the Save button.

Lots of ideas

Since this experience, I'm seeing more uses for BindEvent(). For

example, in a project I'm currently working on, I'm binding the
Activate and Deactivate methods of the base form class to a couple of

application object methods, so I can maintain an application-level

property pointing to the active form. Then I can bind to changes in this
property to handle application-level tasks when the user moves from

one form to another. Among the things I'm currently working out is
keeping toolbar buttons properly enabled and disabled, based on the

active form and its status.

