Tamar E. Granor, Ph.D.

One of the things that makes Visual FoxPro such a
great tool for developing software is the open archi-
tecture that makes it easy to create developer tools.
It’s rare to find an experienced VFP developer who
hasn’t written at least one tool to automate some
task in the IDE. Some people have a whole menu
pad’s worth of developer tools (and in fact, being
able to add a menu pad is one example of VFP’s
open architecture).

The VFPX website was created to allow VFP
developers to share tools, and it now houses quite
a few developer tools (along with a bunch of com-
ponents meant to be used in VFP apps). But it’s not
a great way to share little tools. What's a little tool?
Something that takes just a few lines of code, perhaps
with no user interaction needed. Something where
creating a whole VFPX project would be overkill.

As the VFPX tool PEM Editor was reaching
maturity, Jim Nelson and Matt Slay, its principal
authors and designers, found that there were lots
of little tools they wanted and they started adding
them to PEM Editor. But many of these little tools
weren’t really relevant to managing properties,

November 2012
Number 29

1 Know How...
Try Thor’s Terrific Tools, Part 1
Tamar E. Granor, PhD

8 Deep Dive
Creating ActiveX Controls
for VFP using .Net, Part 4
Doug Hennig

12 VFPX
IntellisenseX
Rick Schummer

19 SAQLite
Vive La Difference —
How SQLite varies from VFP SQL
Whil Hentzen

events and methods of forms and classes. PEM
Editor just proved to be a handy way of distributing
them.

Eventually, they realized that what was really
needed was a tool for managing tools, and Thor
was born. Thor is a tool designed to let you manage
developer tools; it comes with a whole set of tools,
but is extensible so you can add your own developer
tools, as well as those you get from others. Thor allows
you to assign hot keys to any installed tool, as well as
to create custom pads on the VFP menu and custom
pop-up menus accessed by hot keys. (For a longer
introduction to Thor, see Rick Schummer’s article in
the July, 2011 issue of FoxRockX. To learn how to add
your own tools to Thor, see Rick’s September, 2011
article.)

In this short series of articles, I'll look at a num-
ber of the tools that come with Thor to show you
why you want to bother changing the way you
work. Since most of the tools operate on code in the
IDE, I'll need to demonstrate on some programs,
forms and classes. As much as possible, I'll use
code that comes with VEP, such as classes from the
FFC (FoxPro Foundation Classes).

For each tool, I'll also show you where it's
located on the Thor Tools menu.

Highlight Control Structure
Menu: Code | Control Structures | Highlight Control
Structure

I work a lot with other people’s code, that is, code
originally written by another developer. Some-
times, even beautifying the code isn’t enough to
help me grasp its structure. Thor’s Highlight Con-
trol Structure tool is handy when I'm looking at a
particular code block and trying to understand it.
It highlights the entire structure where the cursor
is found, whether it's IF-ENDIF, FOR-ENDFOR,
DO CASE, SCAN-ENDSCAN, DO WHILE, TEXT-
ENDTEXT or TRY-CATCH. If you run the tool a
second time, it highlights the structure containing
the one you already highlighted. Subsequent uses
continue to work their way outward.

For example, Figure 1 shows a block of code
from VFPXTAB.PRG. The cursor is positioned on
an assignment statement that’s inside an IF block
(between “ISNULL” and its open parenthesis).
The IF block is inside a CASE statement, which is
contained in a FOR loop. The FOR loop is inside a
SCAN loop.

SCAN
m.gtotal = .NULL.
FOR i = 2 TO FCOUNT() - 1
IF ISNULL(EVAL(FIELD(m.i)))
LOOP
ENDIF
IF ISNULL(m.gtotal) AND !ISNULL(EVAL(FIELD(m.i)))
gtotal = 0
ENDIF
DO CASE
CASE THIS.totaltype = COUNT_FIELDS

vant fields

values
IF THIS.shownulls
gtotal = m.gtotal + IIF(ISNULI|(EVAL(FIELD(m.i))),0,1)
ELSE
cTmpField = field(m.i)
gtotal = m.gtotal + IIF(ISBLANK (&cTmpField),0,1)
ENDIF
gtotal = m.gtotal + EVAL(FIELD(m.1i))
ENDCASE
ENDFOR
IF THIS.totaltype = PERCENT_ FIELDS
gtotal = IIF(m.sumallflds=0 OR ISNULL(m.gtotal) OR m.gtotal=(
ENDIF
REPLACE (m.totfldname) WITH m.gtotal
FNDSCAN

Figure 1. This block of code, drawn from VFPXTAB.PRG, has
an IF inside a CASE, inside a FOR loop, inside a SCAN loop.

Figure 2 shows the result of using Highlight
Control Structure, while Figure 3 shows the code
after the second application of Highlight Control
Structure. Using the tool a third time would high-

Page 2 FoxRockX

light the entire FOR loop, and a fourth use high-
lights the whole SCAN. In fact, this entire block of
code is inside another IF statement, and a fifth use
of Highlight Control Structure highlights that IF.

SCAN
m.gtotal = .NULL.
FOR i = 2 TO FCOUNT() - 1
IF ISNULL(EVAL(FIELD(m.i)))
LOOP
ENDIF
IF ISNULL(m.gtotal) AND !ISNULL(EVAL(FIELD(m.i)))
gtotal = 0
ENDIF

ENDCASE

ENDFOR
IF THIS.totaltype = PERCENT_FIELDS
- gtotal = IIF(m.sumallflds=0 OR ISNULL(m.gtotal) OR m.gtotal=0,0,ROUND (m.g

igPLACB (m.totfldname) WITH m.gtotal
ENDSCAN
Figure 2. Using Highlight Control Structure on the code in
Figure 1. This block of code, drawn from VFPXTAB.PRG,
has an IF inside a CASE, inside a FOR loop, inside a SCAN
loop. Highlights just the IF statement where the cursor was

positioned.

SCAN

m.gtotal = L.
FOR i = 2 FCOUNT() - 1
IF ISNULL(EVAL(FIELD(m.1i)))
LOOP
ENDIF
IF ISNULL(m.gtotal) AND !ISNULL(EVAL(FIELD(m.i)))
gtotal = 0

mullsy
m.gtotal + IIF(ISNULL(EVAL(FIELD(m.i))),0,1)

ENDFOR

IF THIS.totaltype = PERCENT FIELDS
gtotal = IIF(m.sumallflds=0 OR ISNULL(m.gtotal) OR m.gtotal=0,0,ROUND (m.gto
ENDIF
REPLACE (m.totfldname) WITH m.gtotal
ENDSCAN

Figure 3. The second use of Highlight Control Structure
highlights the entire CASE statement.

Of course, if you have to drill down through
three layers of menus to use this tool, it probably
won’t seem all that handy. However, one of the
features of Thor is that you can assign a keyboard
shortcut to any tool. Before moving on to look at
other tools, let’s see how you can do so.

Putting tools at your fingertips
Thor offers several mechanisms to make using its
tools easier. The simplest is assigning a keystroke
combination to a tool, so you can use it without
navigating the Thor Tools menu. To do so, open
the Thor Configuration form by choosing Thor |
Configure from the menu. Click the Tool Definitions
tab to open the Tool Definitions page, and navigate
in the treeview on the left pane until you find the
tool to which you want to add a hotkey. Figure 4
shows the Tool Definitions page with the Highlight
Control Structure tool selected.

November 2012

@ Create LOCALs
§ Dynamic Snippets
=T Control Structures
& Highlight Control Structure
Close Control Structure
@--TF Enhanced Cut/Copy
@ Highlighted Text
@--TF Highlighting text
- Inserting text
-7 MDots
- Misc.

Favorites, MRUS, etc

Source: IDE Tools

Catch, Do Case /EndCase, etc).

E-E-E-EE-E

28
El

Objects and PEMs
Parent Classes
Reports

Settings & Misc.
Tables

e e
el of of o ef of ef &

o
E
H

Tool home page

®
e
g
g
H

& Thor Configuration E' 0] @
Menu Definitions \ Tool Definitions]Hot Key Assignments “fophons \
ot
W redoe
= Code Run this tool when Thor
B BeautifyX

Program: Thor_Tool_PEME_HighlightControlStructure.PRG
Desaription: Highlights the current control structure (If / Endif, Try /
If used repeatedly, wil highlight the next highest control structure,
etc.

Version: PEM Editor w/IDE Tools - 7.10.043 - May 7, 2012

CreateTool |

(L open Tool Folder

d:\fox\vfpx\thor\

Thor - 1.20.18 - March 29, 2012

Figure 4. The Tool Definitions page of the Thor Configuration form lets you

specify a keyboard combination to run a tool.

ing submenus to the existing pads or adding
tools directly to existing pads. So if you like
using the menu, but find that the tools you
want to use are buried too deeply in the Thor
Tools menu, you can put them where you
want them.

In addition, you can create pop-up
menus that appear when a specified key
combination is pressed. These are like right-
click menus, except that they’re triggered by
the key combination you specify. These pop-
up menus can include whichever tools you
choose, and can have submenus, if you wish.

To modify the VFP system menu or to
create a pop-up menu, use the Menu Defini-
tions page of the Thor Configuration form.
Figure 7 shows that page after clicking the
Add Menu button with the Popup Menus

Click the ellipsis button (indicated in the
figure) and then, as the message that appears

(Figure 5) says, press the keyboard combina-
tion you want to use. Once you do so, the
message disappears, and the textbox shows
the specified hotkey. In Figure 6, you can see
that I've specified Shift+Ctrl+C as the hot key
for Highlight Control Structure (described in
the next section of this article).

The key combination you specify doesn’t
take effect until you either close the Thor
Configuration form or click the Thor button
at the top right of the form to refresh menus
and hot keys.

The Thor Configuration form offers a

& Thor Configuration =N EoE <
Menu Defitons | Tool Defritons || Hot ey Assignments || options |
=T VFP System Menu Prompt INew Menu]
B File
E Edit Status bar
T view
F Tools
F Progrem sotiey [ea] [cer
T Window
T Help
B Tho\<r
F Tho\<r Tools AddasToplevel | [copymenu |
=] Popup Menus — = =
B T Add as Popup Add Copied Menu
[(addmeny | [CAddsubMenu | [AddTool][Addseparator |
d:\fox\vfpx\thor\ Thor - 1.20.18 - March 29, 2012

couple of other ways to make individual
tools more accessible. You can modify the
VFP system menu, adding entire pads, add-

Press the desired hotkey ...

iy tdit Tool

br [Esc] to cancel

in this tool ve Tool
am: Thor_Tool_PEME_HighlightControlstructure.PRG
e: IDE Tools

iption: Highlights the current control structure (If / EndIf, Try /
|, Do Case /EndCase, etc).

Figure 5. After you click the ellipsis button for a hot key,
this message appears. Do as it says to specify a hot key.

e
| Clear |

["TRun this tool when Thor starts

Hotkey Shift-Ctrl-C | EditTool |

Remove Tool

Program: Thor_Tool_PEME_HighlightControlStructure.PRG
Source: IDE Tools

Figure 6. Once you type the desired key combination, it
appears in the hot key textbox.

November 2012

FoxRockX

Figure 7. On the Menu Definitions page of the Thor Configuration form, you
can add items to the VFP system menu, and create your own pop-up menus.

item highlighted. To define the pop-up menu,
specify the prompt (which appears only in the Thor
Configuration form) and a hotkey for the pop-up.
Then, use the Add Tool button to add one or more
tools to the pop-up menu.

In Figure 8, the new pop-up menu has been
defined and Thor’s two tools that deal with control
structures added. Figure 9 shows the newly defined
pop-up over a code window.

The ability to add hot keys, to modify the VFP
system menu, and to define pop-up menus makes
it easy for you to decide which Thor tools you're
likely to use and then make those easily accessible.

Edit Parent and Containing
Classes

Menu: Parent Classes | Edit Parent and Containing
Classes

This tool may well be the one most likely to get
people to use Thor. One of VFP’s weaknesses is
that when you're editing a form or class, you can-

Page 3

inherits from sfTreeviewCursor, which

& Thor Configuration =N EoR =%

e inherits from sfTreeviewContainer,

£ VFP System Menu Prompt | Close Control Structure = | which inherits from sfContainer.
3 sy [e e | The form doesn’t actually
Ez%am S| Coe e sy s, indicate which classes are in the
3 tndou . i | mhentance]f}lerarchy a.nd which are
F Thow<r Y] potkey ME= || in the containership hierarchy. Both
L e o Progam; Thor Too PEME_FdCanrolStruchre. PRG are included with the containership
T et oo e (SHCEEO) Desator:Coses the urentconvol s by psting S, Endcase, i o5 hierarchy shown first. Figure 12 shows
& O] Verson: P Edtor D Tocks 710,043 -¥ay 7, 2012 another example from the same form.
Before opening the tool this time,
the timer control inside the treeview
container was selected. The form
shows that the timer is contained on a
form of class sfExplorerFormTreeview,
s e R — and also contained in a container
dEVorWonthor o 1w meanae | Of class sfTreeviewExplorer, which

Figure 8. A pop-up menu has been defined, containing the two tools related to control

structures.

el Highlight Control Structure Shift-Ctrl-C
5 Close Control Structure
IIF (ISBLANRKTECTMPFTETO U LY

Figure 9. When you use the shortcut for the pop-up menu, it
appears at the mouse position.

not open any class in the inheritance

inherits from sfTreeviewCursor and
sfTreeviewContainer. Finally, the timer
is based on class sfTimer.

One thing in Figure 12 might be
a little confusing. When looking at the container
for the timer, why does the list stop with
sfTreeViewContainer? Why doesn’t it go all the
way back to sfContainer, as in Figure 11. The Edit
Parent Class and Containing Classes tool opens
this form to let you jump around among the classes

hierarchy of any member of the class | =5¢,., pecigner - inspectorsor

@ =]

being edited. For example, if you're
working on a listbox on a form, and
you realize that you need to change
some code or a setting in the class
the listbox is based on, you have to
close the form and then open the list-
box class. When you’re done making
changes, you have to close the listbox
class and reopen the form.

While Thor can’t change that
rule, it can make dealing with it eas- .

E-Sample Node
Sample Node
Sample Node

Sample Node

@& Object and Collection Inspector

EE=] g

Count | txtCount

Property Type Value ~
abl

ier. That's what this tool is about. It

opens a form showing the classes in
the selected object’s heritage, and al- | <

lows you to open any of them (after
closing the current class or form).
When you do so, the form stays open
to allow you to easily get to other list-
ed classes; it also contains a button to reopen the
form or class you were originally editing.

For example, the Object Inspector that I built is
based on a set of classes that Doug Hennig published.
The main form, shown in Figure 10, includes a
container class called sfIreeviewExplorer that
incorporates a treeview and several other controls.
WhenlIruntheEditParentand ContainingClassestool
with that object selected, the form shownin Figure 11
opens. It shows that the control is included in a Form
class called sfExplorerFormTreeview and that the
control is based on class sfIreeviewExplorer, which

Page 4 FoxRockX

Figure 10. The Object Inspector is based on Doug Hennig’s Explorer forms. Here, the
sfTreeviewExplorer container object is selected.

~

~y Edit Parent Class and Containing Classes = |5
First: Save or dose the axrent form / dass
Then: Select the parent dass/containing dass from the grid below.
Class Class Library Base Class -

[E5] Sfexplorerformtreevie:. . \VFPX Projects\Object Inspector \sfexplorer. Form

[=)sftreeviewexplorer ..\VFPX Projects\Object Inspector\sfexplorer. container
[sftreeviewcursor ..\VFPX Projects\Object Inspector\sftreeview container
[=sftreeviewcontainer ..\VFPX Projects\Object Inspector\sftreeview container
[sfcontainer ..\VFPX Projects\Object Inspector \sfctrls.vex container

[Modify Selected Class] [Return to Original] [Cancel]

L J

Figure 11. The Edit Parent Class and Containing Classes tool
opens this form to let you jump around among the classes in an
object’s heritage.

November 2012

= | [E] > S-

"y Edit Parent Class and Containing Classes

First: Save or close the current form / dlass

Then: Select the parent dass/containing dass from the grid below.

Class Class Library Base Class

FPX Projects\Object Inspector \sfexplore:
PX Projects\Object Inspector\sfexplorer container
..\VFPX Projects\Object Inspector\sftreeview container
..\VFPX Projects\Object Inspector\sftreeviewcontainer

..\VFPX Projects\Object Inspector\sfctrls.vex timer

xplorer
= sftreeviewcursor
= sfreeviewcontainer
&y sftimer

[ModufySelectedClass] [Return to Original] [Cancel]

Figure 12. This time, one of the timers inside the
sfTreeviewExplorer was selected when this tool was run.

in an object’s heritage. The answer is that the
tool doesn’t trace the inheritance hierarchy for
containing classes. What it does is show you
every class in that hierarchy that contains the
specified object. So, in this example, sfContainer
doesn’t include the timer; it was added to
sfTreeviewContainer, and then inherited by
that class’s subclasses, sfTreeviewCursor and
sfTreeviewExplorer.

As the instructions at the top of the form
indicate, before I can open any of those classes, I
have to close the Inspector form. But then, I can
choose a class and click Modify Selected Class to
open it. Once I've finished editing and closed the
Class Designer, I can click Return to Original to
reopen the Inspector form exactly as I left it.

Create Locals
Menu: Code | Create LOCALs

If only I'd had Thor back then. Thor’s Create
Locals tool takes any code editing window and
adds the necessary local declarations. Figure 13
shows a little block of code (that dumps the list of
forms in a project into a cursor); it uses several vari-
ables, but none of them are declared.

Figure 14 shows the same block of code after
running the Create Locals tool; the arrow points to
the local declarations.

You can control some aspects of this tool’s behav-
ior using the Options tab of the Thor Configuration
tool.

act] getformclassesinproject.prg * E’@

LPARAMETERS cProject -
MODIFY PROJECT (cProject) NOWAIT

oProject _VFP.ActiveProject
CREATE CURSOR FormClasses (cClass C(30), nCount N(3))
INDEX on UPPER(cClass) TAG cClass

SELECT 0
FOR EACH oFile IN oProject.Files
IF oFile.Type = "K"
TRY
USE (oFile.Name) ALIAS Form
LOCATE FOR UPPER(BaSEClES)
cClassName Form.Class
IF SEEK(UPPERE.CClassNamE), "FormClasses"™, "cClass")
REPLACE nCount WITH nCount + 1 IN FormClasses
ELSE
INSERT INTO FormClasses VALUES (m.cClassName, 1)
ENDIF
USE IN DBF("__Form")
CATCH
ENDTRY

"EORM"

ENDIF
ENDFOR

I've always known that declaring all the variables
used in a routine is a best practice, and since Fox-
Pro morphed into VFP, that declaring all variables
local is the best choice. But the importance of the
declarations was really brought home to me by
one project. It involved a VFP application that
provided a user interface, but also instantiated a
VEFP COM object. The COM object had a timer,
and when the timer fired, the COM object could
call methods of the main application’s application
object. Of course, those calls interrupted whatever
was going on in the main application.

While testing this code, we ran into some
very weird errors with code working most of
the time, but every so often, behaving quite
strangely. Eventually, we realized that many
of the problems were due to having undeclared
variables (which, by default, are private rather
than local). The routines called by the timer
code used some of the same variable names,
and when the variables weren’t local, actually
changed the values of the variables in the rou-

Figure 13. This block of code uses several undeclared variables.

25 getformclassesinproject.prg * E@
LPARAMETERS cProject -
LOCAL cClassName, oFile, oProject d——————m
MODIFY PROJECT (cProject) NOWAIT

oProject _VFP.ActiveProject
CREATE CURSOR FormClasses (cClass C(30), nCount N(3))

INDEX on UPPER(cClass) TAG cClass

SELECT 0
FOR EACH oFile IN oProject.Files
IF oFile.Type = "K"
TRY
USE (oFile.Name) ALIAS __ Form
LOCATE FOR UPPER (BaseClass)
cClassName _ Form.Class
IF SEEK(UPPER (m.cClassName), "FormClasses", "cClass")
REPLACE nCount WITH nCount + 1 IN FormClasses
ELSE
INSERT INTO FormClasses VALUES (m.cClassName, 1)
ENDIF
USE IN DBF("_FOrm")
CATCH
ENDTRY

"EORM"

ENDIF
ENDFOR

tine that was interrupted by the timer. Once we
ensured that every variable in every method
was declared local, many of the problems went
away.

November 2012

Figure 14. After running the Create Locals tool, the same block has
variable declarations.

FoxRockX Page 5

Figure 15 shows the Options tab with settings
for Create Locals displayed, and Figure 16 shows
the choices in the Selection of variables dropdown.
That dropdown lets you indicate whether all vari-
ables should be declared or only those whose
names begin with a lowercase “1,” the prefix used
for local variables in the Hungarian naming con-
vention. Since I use a different naming convention
(prefixing variables with their type, but not with
“1”), I prefer the “All variables, merged” option.

Add MDots to variable names
Menu: Code | MDots | Add MDots to variable
names

As with declaring all variables local, I've known for
years that all accesses of a variable should be pre-
ceded by “m.” (often written as “MDot”) to ensure
that VFP looks at the variable rather than at a field
of the same name. In fact, increasingly, I remember
to put them in my code, but I still forget sometimes.
This Thor tool catches all the places I missed.

& Thor Configuration

Menu Definitions || Tool Definitions [Hot Key Assignments | Options ‘

doesn’t use the MDot notation. Figure 18

Figure 17 shows a block of code that

Tool [Create Locals

shows the same code after using this tool.

Thor
BeautifyX
Break Highlighted Text Al variables, merged =]
Comment Highlighted Text
Create Locals

Highlight Next Parentheses
MDots Allvariables use 'AS datatype' phrase [
Modify Class for PRG Classes
Move/Resize Code Window
ReDefine Parent Class Line Width 100
Resize Designer Window
Source Control

Toggle Comment Colors

Selection of variables

Move/merge LOCALS statements to top

Remove orphan LOCALs
L
Muttple variables per line V]

In PRGs, create LOCALS for all Procedures [|

Create LOCALS as part of BeautifyX [

A couple of the changes have been circled.

By default, this tool adds MDots a few
places where they’re not necessary, such as on
the left-hand side of assignment statements.
However, you can control this behavior using
the Options tab of the Thor Configuration
form, shown in Figure 19. Figure 20 shows
the same block of code when using the tool as
configured in Figure 19.

d:\fox\vfpx\thor\

Thor - 1.22.16 - June 5, 2012

Figure 15. This page lets you determine how the Create
Locals tool behaves.

Create Locals

Selection of variables
All variables, merged E]

Lowercase ‘L’ variables only
Lowercase 'L’ variables only; commented list of others
All variables, lowercase ‘L’ variables separately

Figure 16. Create Locals can apply to only a subset of
variables, based on their names.

Most of the other choices should be self-explan-
atory, or easily understood with a little testing. The
last checkbox, Create LOCALS as part of BeautifyX,
determines whether local declarations are added
when using the BeautifyX tool, which is a replace-
ment for VFP’s native Beautify.

If, even after trying different settings, you don’t
like the way the local declarations are created, Thor
offers you the ultimate flexibility. You can create your
own version of the code for the tool. To do so, choose
More | Manage Plug-Ins from the Thor menu. In
the form that appears, find CreateLocalsStatements
and click the Create button next to it. That opens a
program containing the current code used to actually
create the local declarations. You can modify it and
save it (it's automatically stored in the right place),
and from then on, the tool will use your modified
version.

Page 6 FoxRockX

4 killapp.prg =8 ECR ~x"|

LOCAL 1lnDesktopHWnd, 1nHWnd, 1nOldHWnd, lcClass, lnLen, nClosedCount

1nDesktopHWnd = GetDesktopWindow ()
1nHWnd = GetWindow(lnDesktopHWnd, GW_CHILD)
1nClosedCount = 0

DO WHILE lnHWnd <> 0
lcClass = SPACE(256)
| Inlen = GetClassName(lnHWnd, @lcClass, 256)
1nOldHWnd = lnHWnd
1nHWnd = GetWindow (1nOldHWnd, GW_HWNDNEXT)
IF UPPER(LEFT(lcClass, lnLen)) = UPPER(tcClassName)
1nVisible = IsWindowVisible (1nOldHWnd)
IF 1nVisible = 0
PostMessage (1nOldHWnd, WM_CLOSE, 0, 0)
InClosedCount = 1lnClosedCount + 1
ENDIF
ENDIF
ENDDO

RETURN 1nClosedCount

(] »

Figure 17. This code doesn’t use the MDOT notation to prevent
conflicts between variables and field names.

x4 killapp.prg * =8 ECR ~x"|

LOCAL 1lnDesktopHWnd, 1nHWnd, 1nOldHWnd, lcClass, lnLen, nClosedCount

. 1nDesktopHWnd GetDesktopWindow ()
m =

. GetWindow (m.lnDesktopHWnd, GW_CHILD)
m.1lnClosedCount = 0

DO WHILE m.lnHWnd <> 0
m.lcClass = SPACE (256)
m.lnLen = GetClassiName(m.lnHWnd, @m.lcClass, 256)
m. 1nOLdHWnd <n. LnHWngd)
m.1lnHWnd = GetWIindow (m.lnOldHWnd, GW_HWNDNEXT)
IF UPPER(LEFT (m.lcClass, m.lnLen)) = UPPER(m.tcClassName)
m.1lnVisible = IsWindowVisible (m.1lnOldHWnd)
IF m.1lnVisible = 0
PostMessage (m.1lnOldHWnd, WM_CLOSE, 0, 0)
m.1lnClosedCount = m.1lnClosedCount + 1
ENDIF
ENDIF
ENDDO

RETURN m.lnClosedCount

(] »

Figure 18. After using the Add MDot to variable names tool, the
code from Figure 17 has “m.” before all references to variables.

November 2012

Modify Class for PRG Classes
Move/Resize Code Window
ReDefine Parent Class
Resize Designer Window
Source Control

Toggle Comment Colors

[¥] Use MDots only where required
[[] Create MDots as part of BeautifyX

. o s Like Highlight Control Structure, using
T, o rrv—— Eo— @&@ | this tool repeatedly moves outward; Figure
Too oots 23 shows the same block of code after using
Thor . .
Beautifyx the tool twice. Oddly, if there are no more
Break Highlighted Text Not used X T .
CommentHhlghied Tex B pairs of parentheses containing the high-
e . percsse) lighted code, the tool highlights all the code

in the editing window.

Highlight parentheses is smart enough
to get things right when the matching pair
of parentheses contains other parentheses.
For example, in Figure 24, the cursor is
positioned on the FIELD() function, but not
inside its parentheses. Figure 25 shows the
result of using the tool. The correct pairing
is found.

d:\fox\vfpx\thor\

Thor - 1.22.16 - June 5, 2012

Figure 19. Thor offers options for various tools. Here, you can deter-
mine whether the Add MDots tool uses lower-case or upper-case and

whether it puts MDots in front of all uses of variables or only those
where it's required to avoid conflict with field names.

s} killapp.prg *

E=0 Fe8 X

LOCAL 1lnDesktopHWnd, 1lnHWnd, 1nOldHWnd, lcClass, lnLen, nClosedCount

1InDesktopHWnd GetDesktopWindow ()
InHWNd—="GetWindow (m.1lnDesktopHWnd, GW_CHILD)

1nClosedCount = 0

DO WHILE m.lnHWnd <> 0
lcClass = SPACE(256)
Inlen = GetClassName(m.lnHWnd, @m.lcClass, 256)
1nOldHWnd = m.1lnHWnd
1nHWnd = GetWindow (m.lnOldHWnd, GW_HWNDNEXT)
IF UPPER(LEFT (m.lcClass, m.lnLen)) = UPPER(m.tcClassName)
1nVisible = IsWindowVisible (m.1lnOldHWnd)
IF m.1lnVisible = 0
PostMessage (m.1nOldHWnd, WM_CLOSE, 0, 0)
InClosedCount = m.lnClosedCount + 1
ENDIF
ENDIF
ENDDO

]

RETURN m.lnClosedCount

il »

Figure 20. After changing the option to include MDots only
where required, variables on the left-hand side of an assign-
ment statement no longer get the MDot prefix.

Highlight Parentheses

Menu: Code | Highlighting text | Highlight paren-
theses

This is another tool that’s especially handy when
I'm exploring code written by someone else or old
code I haven’t seen in a while. It's also great for
those times when I'm getting a syntax error and
can’t see what’s wrong. When you run this tool, it
looks both ways from the cursor position to find
a matching pair of parentheses and highlights the
matching parentheses and all the code in between.
Figure 21 shows a line of code with nested paren-
theses; the cursor is inside the inner block. Figure
22 shows the same block after using the tool.

cTmpField = field(m.i)
gtotal = m.gtotal + IIF(ISBLANK(&cTnﬁaField),O,l)

Figure 21. The cursor here is inside parentheses.

CTmpField = field(m.i)
gtotal = m.gtotal + IIF(ISBLANK{[f{elsuis}BRAReN], O, 1)

Figure 22. Highlight parentheses finds the first containing pair
of parentheses and highlights the contained code.

November 2012

FoxRockX

cTmpField = field(m.i)

gtotal = m.gtotal + IIF[EESSIRNNETeivuis)REARe)NFND)

Figure 23. Each subsequent use of Highlight parentheses
moves out by one pair of parentheses.

IF THIS.shownulls

gtotal = m.gtotal + IIF(ISNULL(EVAL(FIELD(m.i))),0,1)
ELSE
Figure 24. Here, the cursor’s initial position isn’t in the inner-
most pair of parentheses.

IF THIS.shownulls
gtotal = m.gtotal + IIF(ISNULL (EVAL[JSSSPEERR)) 0, 1)
ELSE

Figure 25. The Highlight parentheses tool gets it right, even
when the initial cursor position isn’t inside the innermost paren-
theses.

More to come
In my next article, I'll look at some more Thor tools,
including several that make refactoring easier.

Author Profile

Tamar E. Granor, Ph.D. is the owner of Tomorrow s Solutions,
LLC. She has developed and enhanced numerous Visual
FoxPro applications for businesses and other organizations.
Tamar is author or co-author of nearly a dozen books including
the award winning Hacker’s Guide to Visual FoxPro, Microsoft
Office Automation with Visual FoxPro and Taming Visual
FoxPro’s SQL. Her latest collaboration is VFPX: Open Source
Treasure for the VFP Developer. Her books are available
from Hentzenwerke Publishing (www.hentzenwerke.com).
Tamar was a Microsoft Support Most Valuable Professional
from the program's inception in 1993 until 2011. She is one
of the organizers of the annual Southwest Fox conference. In
2007, Tamar received the Visual FoxPro Community Lifetime
Achievement Award. You can reach her at tamar@thegranors.
com or through www.tomorrowssolutionsllc.com.

Page 7

