
Page 14 FoxRockX September 2009

The Right Keys are Primary
Both the content and the way of creating primary keys have changed
over the years. With VFP 8 and later, setting up surrogate primary keys
is a breeze.

Tamar E. Granor, Ph.D.

FoxPro is a relational database, that is, data is
stored in multiple tables with fields that establish
relationships between those tables. In order to es-
tablish those relationships, there must be a way to
uniquely identify each record in a table. The field or
fields that link one table to another are called keys.
Over the years, the best practices for creating those
keys have changed, as have the tools for doing so
in VFP.
When I started working with FoxBase+, it wasn’t
unusual to use keys that spanned several fields.
For example, a customer might be linked to its or-
ders using the company name and phone number,
as in Listing 1.
Listing 1. In the early days of Xbase, it wasn’t unusual to link
two tables together using multiple fields.
USE Customers IN 0
USE Orders IN 0 ORDER Customer
SELECT Customers
SET RELATION TO UPPER(Company + PhoneNum) ;
 INTO Orders

However, working with this type of relation-
ship is cumbersome, and even before VFP was
introduced, using a single field to link two tables
emerged as a best practice. When VFP 3 introduced
the ability to designate a field as a primary key, with
its uniqueness enforced by the database engine, the
move to single field keys accelerated.

In the example above, rather than using com-
pany name plus phone number to identify a cus-
tomer, you add a customer id field of some sort and
propagate that to the child tables. Using this strat-
egy, the code to open and relate the tables looks
more like Listing 2.

Listing 2. Using a single field rather than multiple fields to re-
late two tables is a best practice.
USE Customers IN 0
USE Orders IN 0 ORDER CustomerID
SELECT Customers
SET RELATION TO CustomerID INTO Orders

Few would argue with the idea of using a sin-
gle identifying field as a primary key, the principal
identifier of a record, in a table like Customers or
Products. We’re accustomed to the idea of assign-
ing an ID to real-world objects like customers and
products. (Consider, for example, the UPC codes

that adorn millions of products or the social secu-
rity number that ostensibly uniquely identifies each
American taxpayer.)

However, even tables that don’t represent real-
world objects with obvious identifiers should have
primary keys as well. So, in the example above, not
only should the Customers and Orders table have
an ID field, so should the LineItems table that lists
the individual items on each order.

You might wonder why you can’t just identify
each line item by its order number and line number,
or by the order number plus the product number.
The second example is easier to dispense with. If a
detail line is identified by order number plus prod-
uct number, each product can be included on only
one line of an order. While that might be the norm,
enforcing such a rule might impose a hardship on
an application’s users.

But why not identify a detail line by the order
number and line number? This leads us to the ques-
tion of surrogate keys.

Using surrogate keys
Although the topic is somewhat controversial, most
VFP experts recommend using what are known as
surrogate keys. That is, give the table a field whose
only purpose is to uniquely identify the record. The
field has no other meaning, and normally, is never
seen by users. VFP 8 made using surrogate keys
easy, with its addition of an auto-incrementing in-
teger data type.

There are many pros, as well as a few cons, to
working with surrogate keys. The biggest strength
of surrogate keys is that they never need to change.
When you use a meaningful data item as a primary
key (sometimes called an intelligent key), you run
the risk that the data might change later. For ex-
ample, consider a Customer table using the name
of the customer (company) as a primary key. If
the customer company changes its name, not only
must the Customer table be updated, but all the
records for that customer in other tables (such as
Order) must be modified as well. With a surrogate
primary key, only the actual customer record needs
to change.

September 2009 FoxRockX Page 15

Another big win for surrogate keys comes in
ensuring uniqueness. Since surrogate keys are as-
signed internally and never seen by the user, it’s
easy to make sure to assign unique values. With
intelligent keys, there’s a chance that the data des-
ignated as the primary key won’t be unique. Ob-
viously, given names and company names aren’t
unique. Even supposedly unique identifiers like
social security numbers turn out to be duplicated
occasionally, whether through error or fraud. Us-
ing a madeup “company code” type field is better,
but then you’re relying on the user to create unique
identifiers. Even if you establish a rule for creat-
ing the identifiers (say, the first 10 characters of the
company name plus the zip code), sooner or later,
you’re likely to run into a repeated value and have
to find another way to generate the code.

Related to ensuring uniqueness is handling
gaps. With surrogate keys, gaps in the sequence
don’t matter. No one ever sees them. If you use a
meaningful field like order number, some users
will want to make sure every value in the sequence
is used. In multi-user applications, that turns out to
be surprisingly difficult.

Because surrogate keys are always just one
field, not multiple fields, writing joins that involve
them is simple.

Finally on the positive side, surrogate keys
are often smaller than intelligent keys. While stor-
age isn’t a big issue any more, anything that saves
space without giving up something in return is still
a plus.

There are two real downsides to using surro-
gate keys. The first is that they can actually make
queries more complex. If a child table contains only
a foreign key to the parent table, rather than actual
data from the parent, every query that needs data
from both must perform a join.

In addition, using surrogate keys makes it dif-
ficult to relink records when data has been dam-
aged in some way. Along these lines, it’s also more
difficult to simply look at a table and understand
what it contains.

Overall, though, the positives of surrogate keys
far outweigh the negatives, and using surrogate
primary keys is a best practice for VFP.

Generating surrogate keys
There are several ways to generate surrogate pri-
mary keys in VFP, but for VFP 8 and later, the auto
incrementing integer field type is the easiest way.

Prior to VFP 8, there was no fully automatic
way to generate surrogate keys. You had to write
some code. In FoxPro 2.x and earlier, the process
was completely manual. You had to be sure to call
the right code to populate the primary key field.

When VFP 3 introduced default values for ta-
bles in a database, the standard approach was to
set the default value for the primary key field to call
the appropriate routine.

As for the code itself, there are several ap-
proaches to generating the key value.

The simplest way to do so was widely used, but
is unsafe for multiuser applications. That is to find
the highest key in use and add one to it, with code
like Listing 3.

Listing 3. This function to generate a surrogate key doesn’t
work for multi-user applications or those that allow multiple cop-
ies of a data entry form to be used simultaneously.
PROCEDURE GetID
CALCULATE MAX(iID) TO nLastID
nNewID = m.nLastID + 1
RETURN m.nNewID

The problem with this code is that two users
working in the same table can generate the same
key value. Even if the record is saved quickly after
generating the key, there’s still a chance for another
user to call this code in the time between the first
user’s call and the new record being saved. Except
in very special circumstances, calculating the maxi-
mum is not the right choice.

The TasTrade database that comes with VFP
demonstrates a safer way to generate a surrogate
key. This technique uses a table to track the key val-
ues for each table. The primary key field of some of
the tables in the database (for example, Orders) has
a default value set to NewID(). The stored proce-
dures for the database contain the NewID function,
which is shown in Listing 4. Until VFP 8, many,
many developers used some version of this ap-
proach.

Listing 4. The NewID method from TasTrade looks up the next
surrogate key value in a table, then updates the table.
FUNCTION NewID(tcAlias)
 LOCAL lcAlias, ;
 lcID, ;
 lcOldReprocess, ;
 lnOldArea

 lnOldArea = SELECT()

 IF PARAMETERS() < 1
 lcAlias = UPPER(ALIAS())
 ELSE
 lcAlias = UPPER(tcAlias)
 ENDIF

 lcID = ""
 lcOldReprocess = SET('REPROCESS')

 *-- Lock until user presses Esc
 SET REPROCESS TO AUTOMATIC

 IF !USED("SETUP")
 USE tastrade!setup IN 0
 ENDIF
 SELECT setup

Page 16 FoxRockX September 2009

 IF SEEK(lcAlias, "setup", "key_name")
 IF RLOCK()
 lcID = setup.value
 REPLACE setup.value WITH ;
 STR(VAL(ALLT(lcID)) + 1, ;
 LEN(setup.value))
 UNLOCK
 ENDIF
 ENDIF

 SELECT (lnOldArea)
 SET REPROCESS TO lcOldReprocess

 RETURN lcID
ENDFUNC

Some people prefer to use GUIDs as surro-
gate keys. The term “GUID” stands for “Globally
Unique ID” and refers to an identifier that is ex-
tremely unlikely to ever be duplicated anywhere.
While that may be overkill for many applications,
creating GUIDs is easy. For distributed applica-
tions that need to allow users in disconnected loca-
tions to create records, GUIDs can be a good choice.
The code in Listing 5, copied from the VFP Wiki (at
http://fox.wikis.com/wc.dll?Wiki~GUID~VFP)
generates and returns a GUID.

Listing 5. To generate GUIDs, you call an API function. Note
that the return value isn’t particularly readable since it uses the
complete ASCII character set.
Function makeid
 Local encodedid
 Declare Integer CoCreateGuid In OLE32.Dll
String @encodedid
 encodedid = Space(16)
 If CoCreateGuid(@encodedid)<>0
 Error "Cannot Create ID"
 Endif
 Return m.encodedid

Letting VFP generate surrogate
keys
VFP 8 introduced the autoincrementing integer
data type. Using this type, you can set a field up
so that each new record is assigned the next value.
There’s no need to specify a default value or write
any code. Autoincrementing integers can be used
in free tables, as well as in database tables.

To set a field to use this type, choose “Integer
(AutoInc)” from the Type dropdown in the Table
Designer. You can also create these fields program-
matically using CREATE TABLE, as in Listing 6.

Listing 6. Use the AUTOINC keyword to make an integer field
autoincrementing.
CREATE TABLE MyTable ;
 (iID I AUTOINC, cOther C(10))

Adding an autoincrementing integer field to
an existing table is a little trickier. These fields are
readonly, so you have to add the field, populate it,
and then make it autoincrement, as in Listing 7.

Listing 7. To add an autoincrementing integer field to an exist-
ing table, add an integer field, populate it, and then change it to
autoincrement.
ALTER TABLE MyTable ADD iID I
REPLACE ALL iID WITH RECNO() IN MyTable
nNextVal = RECCOUNT("MyTable") + 1
ALTER TABLE MyTable ;
 ALTER COLUMN iID I AUTOINC ;
 NEXTVALUE m.nNextVal

Because autoincrementing integer fields are
read-only, you may have to write some processing
code differently. For example, SQL INSERT com-
mands must include a list of fields, so that you’re
not attempting to put data in the autoincrementing
field. Similarly, other commands that attempt to
update all fields of a record have to be used with
caution.

Propagating autoincrementing
keys
When working with parent-child tables, you need
to know the primary key of the parent in order
to insert records into the child table. This can be
a particular problem when working with views.
VFP 9 adds the GetAutoIncValue() function, which
returns the last autoincrement value generated in
the current (or specified) data session. (Note that
you can’t specify which table it applies to, so you
do need to exercise caution with this function.) You
can use the function to retrieve the primary key for
a record after you save it, so you can use that key as
a foreign key in the corresponding child records.

Listing 8 shows an example. It’s based on a da-
tabase containing two tables, Person and Phone.
Each person record can have one or more phone
records. The code shows the addition of a person
with two phones. While code exactly like this is un-
likely to appear in an application, it shows the basic
structure that might be used in a data entry form.
The database, tables and code are included in this
month’s downloads.

Listing 8. GetAutoIncValue() lets you retrieve the most recent
auto-increment value within a data session. It lets you find the
primary key of a parent record, so it can be inserted into a child
record.
* Add a person and some phone numbers,
* using views.

LOCAL iPersonID

SET MULTILOCKS ON

OPEN DATABASE People

USE v_Person IN 0 NODATA
USE v_Phone IN 0 NODATA

CURSORSETPROP("Buffering", 5, "v_Person")
CURSORSETPROP("Buffering", 5, "v_Phone")

INSERT INTO v_Person (cFirst, cLast) ;
 VALUES ("John", "Smith")

September 2009 FoxRockX Page 17

INSERT INTO v_Phone (cPhone) ;
 VALUES ("215-555-1234")
INSERT INTO v_Phone (cPhone) ;
 VALUES ("800-555-9832")

BEGIN TRANSACTION
IF TABLEUPDATE(.f., .f., "v_Person")
 iPersonID = GETAUTOINCVALUE()
 REPLACE ALL iPersonID ;
 WITH m.iPersonID IN v_Phone
 IF TABLEUPDATE(.t., .f., "v_Phone")
 END TRANSACTION
 ELSE
 ROLLBACK
 ENDIF
ELSE
 ROLLBACK
ENDIF

RETURN

Choose the right keys
When designing new applications, use surrogate
keys. If all users will be connected (that is, work-
ing on the same network), VFP’s autoincrementing
integers provide the easiest way to set up surro-
gate keys. With the addition of GetAutoIncVal()
in VFP 9, the biggest problem with these keys has
been resolved. For applications that run in multiple
locations and need to create a common database,
GUIDs provide a good solution.

In older applications, you may find no primary
keys, or only meaningful primary keys. If you’re

making significant changes in such an application,
adding surrogate primary keys is likely to be your
best path.

Whichever approach you choose, using sur-
rogate primary keys will make your applications
more stable and easier to maintain.

What should I cover?
As I mentioned in my last column, I’d love to hear
from readers about what topics to cover in this
column. Please email your suggestions to tamar@
thegranors.com.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for businesses and
other organizations. She currently focuses on working with
other developers through consulting and subcontracting.
Tamar is author or co-author of ten books including
the award winning Hacker’s Guide to Visual FoxPro,
Microsoft Office Automation with VisualFoxPro and
Taming Visual FoxPro’s SQL . Her latest collaboration
is Making Sense of Sedna and SP2, coming out this year.
Her books are available from Hentzenwerke Publishing
(www.hentzenwerke.com). Tamar is a Microsoft Support
Most Valuable Professional. In 2007, Tamar received the
Visual FoxPro Community Lifetime Achievement Award.
You can reach her at tamar@thegranors.com or through
www.tomorrowssolutionsllc.com

Author Profile
Pradip Acharya is a Toronto based developer. Since
1992, his company has released systems for Store Man-
agement & POS, Auto Shop & Tire Stores and Real
Estate Appraisal Management. His most recent project
involves real time display graphics for instrumentation
where milliseconds count. To meet this challenge Pra-
dip has been creating libraries in C to augment speed
not achievable with VFP. pacharya@sympatico.ca.

In my own implementation of the ActiveLabel
class, I have an advanced multi-line ToolTip feature
integrated in the code. This ToolTip utility comes
with its own high power text wrapping capability
which is absent in the ToolTip utilities presented in
earlier issues. If for example, the ActiveLabel opens
and edits Repair History, it shows you the first part
of it on mouse hover, without having to pull up the
record. The ToolTip hooks are commented out in
the Activel.vcx class library in the download.

Continued from Page 24

FoxRockX™(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +496173950903
Fax +496173950904
Email: foxrockx@dfpug.de
Editor: Rainer Becker

Copyright © 2009 ISYS GmbH. This work is an independently produced pub
lication of ISYS GmbH, Kronberg, the content of which is the property of
ISYS GmbH or its affiliates or third-party licensors and which is protected
by copyright law in the U.S. and elsewhere. The right to copy and publish the
content is reserved, even for content made available for free such as sample
articles, tips, and graphics, none of which may be copied in whole or in part or
further distributed in any form or medium without the express written permis
sion of ISYS GmbH. Requests for permission to copy or republish any content
may be directed to Rainer Becker.

FoxRockX, FoxTalk 2.0 and Visual Extend are trademarks of ISYS GmbH. All product names or services
identified throughout this journal are trademarks or registered trademarks of their respective companies.

