Summarizing aggregated

data, Part 2

SQL Server’s CUBE clause lets you summarize data on all dimensions at once, while
GROUPING SETS lets you get whichever summaries you want.

Tamar E. Granor, Ph.D.

In my last article, I introduced the ROLLUP key-
word that lets a single query aggregate data and
then summarize those aggregations. The CUBE
keyword takes that one step farther. GROUPING
SETS goes even farther, letting you specify exactly
which combinations to summarize; it also lets you
summarize without holding on the original aggre-
gated data.

When you use GROUP BY in a query, you get aggre-
gated results. That is, the result contains one record
totalling or counting or averaging or whatevering all
the records that match in the specified fields. So you
can, for example, count and total all invoices by month,
or, as in Listing 1 (SalesByCountryCity.sql in this
month’s downloads), do that for each combination of
city and month. Partial results are shown in Figure 1.

Name City nYear nMonth TotalSales AvgSale NumSales
Australia Wollongong 2007 11 6691.94 836.4925 8
Australia Wollongong 2007 12 58584.68 1105.3713 53

-

46460.98 1548.6993 30
29543.26 1477.163 20
46330.36 14945277 31
42357.88 1033.119 41
39493.51 1128.386 35
64000.30 1280.006 50
367.84 91.96
3578.27 3578.27
3578.27 3578.27
3578.27 3578.27
0 1000.4375 1000.4375
1 2049.0982 2049.0982

Australia Wollongong 2008
Australia Wollongong 2008
Australia Wollongong 2008
Australia Wollongong 2008
Australia Wollongong 2008
Australia Wollongong 2008
Australia Wollongong 2008
Canada Burnaby 2005
Canada Burnaby 2006
Canada Burnaby 2006
Canada Burnaby 2006
Canada Burnaby 2006

- = WO A WN

PP [PR) [IS

Figure 1. The query in Listing 1 computes the total, average and

count for each combination of country, city, year and month.

Listing 1. This query, using SQL Server’s sample Adven-
tureWorks 2008 database, computes sales totals by city and
month.

SELECT Person.CountryRegion.Name,
Person.Address.City,
YEAR (OrderDate) AS nYear,
MONTH (OrderDate) AS nMonth,
SUM (SubTotal) AS TotalSales
AVG (SubTotal) AS AvgSale,
COUNT (*) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID =
Person.BusinessEntityID
JOIN Person.BusinessEntityAddress

Page 8 FoxRockX

ON Person.BusinessEntityID =
BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID =
Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvincelD =
StateProvince.StateProvincelID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode =
CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID =
SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID =
SalesOrderDetail.SalesOrderID
GROUP BY CountryRegion.Name, Address.City,
YEAR (OrderDate), MONTH (OrderDate))

In last month’s article, I showed how the
ROLLUP clause lets you include in the results sum-
maries for various subsets, such as an entire year
for one city. Listing 2 shows one of the examples
from that article; it provides summaries by year for
each city, by city for the whole period, by country
and for the whole data set. Partial results are shown
in Figure 2.

Listing 2. The ROLLUP clause lets you summarize results in a
grouped query.
SELECT Person.CountryRegion.Name,
Person.Address.City,
YEAR (OrderDate) AS nYear,
MONTH (OrderDate) AS nMonth,
SUM (SubTotal) AS TotalSales,
AVG (SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID =
Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID =
BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID =
Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvincelD =
StateProvince.StateProvincelID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode =
CountryRegion.CountryRegionCode

September 2014

JOIN Sales.SalesOrderHeader JOIN Person.StateProvince
ON Customer.CustomerID = ON Address.StateProvinceID =
SalesOrderHeader.CustomerID StateProvince.StateProvinceID
JOIN Sales.SalesOrderDetail JOIN Person.CountryRegion
ON SalesOrderHeader.SalesOrderID = ON StateProvince.CountryRegionCode =
SalesOrderDetail.SalesOrderID CountryRegion.CountryRegionCode
GROUP BY ROLLUP (CountryRegion.Name, JOIN Sales.SalesOrderHeader
Address.City, YEAR(OrderDate), ON Customer.CustomerID =
MONTH (OrderDate)) SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
Australia Bendigo 2008 6 4104722 12827256 32 ON :aiesgrgergeidgi.zaiesgrgerig =
alesOrderDetail.SalesOrder
li i i i1
fpusaln | Pondiga 2008 14 S il 2 GROUP BY CUBE (CountryRegion.Name,
Australia Bendigo 2008 NULL 234093.91 1200.4815 195 Address.City, YEAR(OrderDate),
Australia Bendigo NU.. NULL 5554319.. 1402606 396 MONTH (OrderDate))
Australia Brisbane 2005 7 3578.27 3578.27 1
Australia Brisbane 2005 8 7156.54 3578.27 2 Name City nYear nMonth TotalSales AvgSale NumSales
Australia Brisbane 2005 10 14313.08 3578.27 4 United Kingdom ~Woolston 2007 12 16936.33 1129.0886 15
Australia Brisbane 2005 11 7156.54 357827 2 NUEL Woorstonigli200 /1= 16956.33 /129,980 Il1>
: : United States Yakima 2007 12 22768.39 875.7073 26
Australia Brisbane 2005 12 3374.99 3374.99 1 NULL Yakima 2007 | 12 2276839 | 8757073 | 28
Australia Brisbane 2005 NULL 35579.42 3557.942 10 United Kingdom York 2007 12 50720.73 1334.756 38
Australia Brisbane 2006 3 13931.52 3482.88 4 NULL York 2007 12 50720.73 1334.756 38
Australia Brisbane 2006 4 10531.53 3510.51 3 DS oLt 200741112 0992 /01192 /. 5COINN|15285
NULL NULL NU.. 12 6233117... 10656723 5849
Figure 2. With ROLLUP, summaries are provided for each level you S NOLE NEESINULTIR)I 9827876, - [1960.5961 11 80459
speci Australia NULL 2005 7 209652.... 33814984 62
pecify. =
Australia NULL 2005 8 222538... 32726219 68
Australia NULL 2005 9 173993.... 3346.029 52
Australia NULL 2005 10 217993... 33537443 65
H Australia NULL 2005 11 210683.... 3344.1835 63
IntrOdl’:Ic!n_g CUBE . Australia NULL 2005 12 274185... 3264.1136 84
ROLLUP is limited to summarizing only based on Australia NULL 2005 NULL 1309047.. 33224543 394

the hierarchy you specify. For example, the query
in Listing 2 doesn’t give summaries for each coun-
try for each year. While you can get that result with
ROLLUP, you have to give up some other summa-
ries to do so.

If you want to summarize based on every
possibile combination of values, use CUBE rather
than ROLLUP. The query in Listing 3 is identical
to the one in Listing 2, except that the GROUP BY
clause specifies CUBE rather than ROLLUP. Figure
3 shows part of the results. The items at the top of
the grid include summaries you wouldn’t get with
ROLLUP, such as the summary for all locations in
all Decembers about halfway down and the sum-
mary for Australia for all of 2005 in the last row
shown.This query is included in this month’s
downloads as SalesByCountryCityCubeNoOrder.

sql.

Listing 3. Use the CUBE clause to get summaries for all
combinations of values.

SELECT Person.CountryRegion.Name,
Person.Address.City,
YEAR (OrderDate) AS nYear,
MONTH (OrderDate) AS nMonth,
SUM (SubTotal) AS TotalSales,
AVG (SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonlID
Person.BusinessEntityID
Person.BusinessEntityAddress
Person.BusinessEntityID
BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID
Address.AddressID

JOIN
ON

September 2014

FoxRockX

Figure 3. When you specify CUBE, every possible combination
of values is summarized.

However, some of the results of this query are
misleading. The first few rows in Figure 3 should
give you a clue as to the problem. We're summariz-
ing by name of a city for a month. What if we have
multiple cities with the same name? In fact, this data
set contains several repeated city names, among
them Birmingham. Figure 4. shows that when both
Birminghams have data for a given month, we get
a total for that month that covers both cities, which
is meaning]less.

Name City nYear nMonth TotalSales AvgSale NumSales
United Kingdom Birmingham NULL 6 9782.32 543.4622 18
NULL Birmingham NULL 6 9782.32 5434622 18
United Kingdom Birmingham NULL 7 8189.09 1169.87 7
United States | Birmingham : NULL 7 35.00 35.00 1
NULL ' gham NULL 7 8224.09 1028.0112 8
United Kingdom Birmingham NULL 8 1714.0957 428.5239 4
NULL Birmingham NULL 8 1714.0957 428.5239 4
United Kingdom Birmingham NULL 9 7298.8825 10426975 7
NULL Birmingham NULL 9 7298.8825 10426975 7
United Kingdom Birmingham NULL 10 13124.3075 1009.5621 13
NULL Birmingham NULL 10 13124.3075 1009.5621 13
United Kingdom Birmingham NULL 11 6083.63 6759588 9
United States Birmingham NULL 11 229 229 1
NULL Birmingham NULL 11 6085.92 608.592 10
United Kingdom Birmingham NULL 12 1764417 1604.0154 11
NULL Birmingham NULL 12 17644.17 1604.0154 11

Figure 4. Some of the summarized results can be misleading if fields are
dependent on each other. Here, we get totals for a given month for both
Birminghams.

The way to avoid the problem is to group fields
together if their data is linked. You do that by put-
ting parentheses around the fields to be grouped.
Listing 4 shows the same query, but with the Name

Page 9

(that is, Country) and City fields grouped together.
(It also has an ORDER BY clause to sort the results
into a useful order.) It's included in this month’s
downloads as SalesByCountryCityCubeCombined.
sql. Figure 5 shows partial results; note that there
are no totals where Name is null, but City is not.

Listing 4. Group fields with parentheses in the CUBE clause to
have them treated as a single dimension.

SELECT Person.CountryRegion.Name,
Person.Address.City,
YEAR (OrderDate) AS nYear,
MONTH (OrderDate) AS nMonth,
SUM (SubTotal) AS TotalSales,
AVG (SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID =
Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID =
BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID =
Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvincelID =
StateProvince.StateProvinceID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode =
CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID =
SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID =
SalesOrderDetail.SalesOrderID
GROUP BY CUBE ((CountryRegion.Name,
Address.City),
YEAR (OrderDate),
MONTH (OrderDate))
ORDER BY Name, City, nYear, nMonth

Name City nYear nMonth TotalSales AvgSale NumSales
NULL NULL 2008 6 5534993.75 996.7573 5553
NULL NULL 2008 7 137184.87 62.0465 2211
Australia Bendigo NULL NULL 555431.9893 1402.606 396
Australia Bendigo NULL 1 45717.8121 1576.4762 29
Australia Bendigo NULL 2 35863.8521 1434554 25
Australia Bendigo NULL 3 47283.4582 1432832 33
Australia Bendigo NULL 4 63837.0056 1329.9376 48
Australia Bendigo NULL 5 61997.1378 1265.2477 49
Australia Bendigo NULL 6 63823.672 1556.6749 41
Australia Bendigo NULL 7 60588.16 1731.0902 35
Australia Bendigo NULL 8 28585.1242 12428314 23
Australia Bendigo NULL 9 23499.03 1382.2958 17
Australia Bendigo NULL 10 52875.3221 1429.0627 37
Australia Bendigo NULL 11 34616.54 1081.7668 32
Australia Bendigo NULL 12 36744.8752 1360.9213 27
Australia Bendigo 2005 NULL 41972.84 3497.7366 12
Australia Bendigo 2005 7 20909.78 3484.9633 6
Australia Bendigo 2005 9 3578.27 3578.27 1
Australia Bendigo 2005 10 6953.26 3476.63 2

Figure 5. With country and city grouped, the results don’t have
totals for a city without the associated country.

If you don’t want summaries for each month
across the years (that is, for example, for all Aprils),
you can group year and month in the CUBE clause,

Page 10 FoxRockX

as well, as in Listing 5. A query that uses this CUBE
clause is included in this month’s downloads as
SalesByCountryCityCubeCombinedBoth.sql.

Listing 5. You can have multiple groups of fields within the
CUBE clause.

GROUP BY CUBE (
(CountryRegion.Name, Address.City),
(YEAR (OrderDate), MONTH (OrderDate)))

Fine tuning the set of summaries

ROLLUP and CUBE take care of very common sce-
narios, but each is restricted in which set of sum-
maries you can get, and each includes the basic
aggregated data in the result. What if you want a
different set of summaries? What if you want just
the summaries without the basic aggregated data?

In our example, suppose you want to see the
summary for each month across all years and loca-
tions, the summary for each year across all months
and locations, and the summary for each location
across all months and years? You could get those
results by doing a separate query for each and then
combining them with UNION ALL, as in Listing
6 (SummariesUnion.SQL in this month’s down-
loads); Figure 6. shows partial results.

Listing 6. You can retrieve just the summaries using UNION
ALL.

SELECT Person.CountryRegion.Name,
Person.Address.City,
null AS nYear,
null AS nMonth,
SUM (SubTotal) AS TotalSales,
AVG (SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID =
Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID =
BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID =
Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvincelID =
StateProvince.StateProvinceID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode =
CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID =
SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID =
SalesOrderDetail.SalesOrderID
GROUP BY Person.CountryRegion.Name, City
UNION ALL
SELECT NULL AS Name,
NULL City,
NULL AS nYear,
MONTH (OrderDate) AS nMonth,
SUM (SubTotal) AS TotalSales,
AVG (SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales
FROM Sales.SalesOrderHeader

September 2014

JOIN Sales.SalesOrderDetail

ON SalesOrderHeader.SalesOrderID =
SalesOrderDetail.SalesOrderID
GROUP BY MONTH (OrderDate)
UNION ALL
SELECT NULL AS Name,
NULL AS City,
YEAR (OrderDate) AS nYear,
NULL AS nMonth,
SUM (SubTotal) AS TotalSales,
AVG (SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales

FROM Sales.SalesOrderHeader
JOIN Sales.SalesOrderDetail

ON SalesOrderHeader.SalesOrderID =
SalesOrderDetail.SalesOrderID
GROUP BY YEAR (OrderDate)

ORDER BY Name, City, nYear, nMonth

Name City nYear nMonth TotalSales AvgSale
NULL NULL NULL 7 228486423.7421 27584.9841
NULL NULL NULL 8 346541500.3052 29440.2769
NULL NULL NULL 9 314385828.5747 29177.339
NULL NULL NULL 10 166185042.8543 20133.8796
NULL NULL NULL 11 2714594749601 24909.1094
NULL NULL NULL 12 235620076.8434 20664.8023
NULL NULL 2005 NULL 141944504.3041 27556.6888
NULL NULL 2006 NULL 779150362.1894 40259.9267
NULL NULL 2007 NULL 1169638118.0044 22827.9976
NULL NULL 2008 NULL 505737472.1795 11096.5743
Australia Bendigo NULL NULL 555431.9893 1402.606
Australia Brisbane NULL NULL 546014.4579 1403.6361
Australia Caloundra NULL NULL 527130.8302 1301.5576
Australia Cloverdale NULL NULL 384307.4948 1311.6296
Australia Coffs Harbour NULL NULL 394188.9185 1018.576

Figure 6. Sometimes, you want only the summaries, not the original aggregations.

That’s a lot of code. SQL Server offers an

alternative way to do this, using a feature called
GROUPING SETS. They let you fine tune which
summaries you get. With GROUPING SETS, you
explicitly tell the query which combinations to
summarize. The GROUPING SETS equivalent
of the UNIONed query in Listing 6 is shown in
Listing 7 (included in this month’s downloads as
SummariesGroupingSets.SQL).

Listing 7. GROUPING SETS let you ask for the specific set of
summaries you want.

SELECT Person.CountryRegion.Name,
Person.Address.City,
YEAR (OrderDate) AS nYear,
MONTH (OrderDate) AS nMonth,
SUM (SubTotal) AS TotalSales,
AVG (SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonlID =
Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID =
BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID =
Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvincelID =

September 2014

FoxRockX

StateProvince.StateProvincelID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode =
CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID =
SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID =
SalesOrderDetail.SalesOrderID
GROUP BY GROUPING SETS (
(CountryRegion.Name, Address.City),
(YEAR (OrderDate)), (MONTH (OrderDate)))
ORDER BY Name, City,

YEAR (OrderDate), MONTH (OrderDate)

The GROUP BY clause indicates three grou-
ping sets here, each enclosed in parentheses:
(CountryRegion.Name, Address.City)

2;:385'95 which says to show totals for each city
—— and country combination, across all
e years and months; (YEAR(OrderDate)),
8054 which asks for totals for each year,
10898 across all locations and months; and
11402 (MONTH(OrderDate)), which requests
5151 totals for each month, across all loca-
19353 tions and years. The parentheses are
51237 required in the first case, to show that
45576 city and country are to be treated as a
o= set. While they’re not required for the
2hd other two items, they do make clear that
:gg each is to be handled separately.

387 ROLLUP and CUBE are actually

special cases of GROUPING SETS. You
can use GROUPING SETS to get the
same results, though it actually makes
the code longer. Listing 8 shows the GROUP BY
clause for the GROUPING SETS equivalent of the
ROLLUP query in Listing 2. (The complete version
of this query is included in this month’s downloads
as GroupingSetsRollupEquiv.sql.)

Listing 8. You can use GROUPING SETS instead of ROLLUP,
but it calls for more code in the GROUP BY clause.

GROUP BY GROUPING SETS (
(CountryRegion.Name, Address.City,
YEAR (OrderDate), MONTH (OrderDate)),
(CountryRegion.Name, Address.City,
YEAR (OrderDate)),
(CountryRegion.Name,
(CountryRegion.Name),

0)

Address.City),

There are five grouping sets shown. The first
set, which includes all four non-aggregated fields is
the equivalent of simply doing a GROUP BY with
that list. It does the aggregation, but no summaries.

Each grouping set after that contains one fewer
field than the preceding one, until the last contains
no field, indicating that the summary should be
computed over the entire data set. Looking at this
GROUP BY clause actually helps to clarify what
ROLLUP does. It aggregates on all the fields listed,
then one by one, removes fields from the right and
aggregates again.

Page 11

For the equivalent of CUBE, the Name
GROUPING SETS list is even more NULL
unwieldy, butagainitshedslightonwhat’s ~ NULL
going on when you use CUBE. Listing 9 Australia
shows the GROUP BY clause for a query ~ Austalia
(GroupingSetsCubeCombinedEquiv.sql 2”St'a:fa
. . ustralia
in this month’s downloads) that produces :

.o Australia

the same results as Listing 4. :
Australia

Listing 9. Replacing CUBE with GROUPING SETS Australia
lets you see all the cases that CUBE handles. Australia
GROUP BY GROUPING SETS (Australia
(CountryRegion.Name, Address.City, Australia
YEAR (OrderDate), MONTH (OrderDate)), Australia
(CountryRegion.Name, Address.City, Australia
YEAR (OrderDate)), Australia
(CountryRegion.Name, Address.City, Australia
MONTH (OrderDate)), 7
(CountryRegion.Name, Address.City), Auamﬁa
(YEAR (OrderDate), MONTH (OrderDate)), Australia

(YEAR (OrderDate)
(MONTH (OrderDate
()

)l
))

Note that unlike the CUBE query, you don’t
have to (in fact, can’t) enclose the country/city pair
in parentheses here. You just omit any grouping
sets that include one without the other.

Of course, there’s no reason to write out
the long version when you can use ROLLUP or
CUBE. But when you need something else, having
GROUPING SETS available is a big help.

As Listing 7 demonstrates, grouping sets also
let you get summaries without including the basic
aggregated data. Just omit the grouping set that
lists all the fields on which to aggregate. Be aware,
though, that as with any other GROUP BY clause,
every field in the field list that doesn’t include an
aggregate function must appear somewhere in the
list of grouping sets.

Listing 10 shows the GROUP BY clause for a
query that’s equivalent to Listing 4, but without
the first grouping set, so that only the summaries
are included. Figure 7 shows partial results; if you
compare to Figure 5, you can see that the rows
where nothing is null have been eliminated. This
query is included as GroupingSetsWithoutAggre-
gates.sql in this month’s downloads.

Listing 10. By omitting the grouping set that includes all non-
aggregated fields, you can get just the summaries you want
without the base aggregated data.

GROUP BY GROUPING SETS (
(CountryRegion.Name, Address.City,
YEAR (OrderDate)),
(CountryRegion.Name, Address.City,
MONTH (OrderDate)),
(CountryRegion.Name, Address.City),
(YEAR (OrderDate), MONTH (OrderDate)),
(YEAR (OrderDate)),

(MONTH (OrderDate)),
()

Page 12

City nYear nMonth TotalSales AvgSale NumSales
NULL 2008 6 5534993.75 996.7573 5553
NULL 2008 7 137184.87 62.0465 2211
Bendigo NULL NULL 555431.9893 1402.606 396
Bendigo NULL 1 45717.8121 1576.4762 29
Bendigo NULL 2 35863.8521 1434554 25
Bendigo NULL 3 47283.4582 1432.832 33
Bendigo NULL 4 63837.0056 1329.9376 48
Bendigo NULL 5 61997.1378 1265.2477 49
Bendigo NULL 6 63823.672 1556.6749 41
Bendigo NULL 7 60588.16 1731.0902 35
Bendigo NULL 8 28585.1242 1242.8314 23
Bendigo NULL 9 23499.03 1382.2958 17
Bendigo NULL 10 52875.3221 1429.0627 37
Bendigo NULL 11 34616.54 1081.7668 32
Bendigo NULL 12 36744.8752 1360.9213 27
Bendigo 2005 NULL 41972.84 3497.7366 12
Bendigo 2006 NULL 68205.8315 2435.9225 28
Bendigo 2007 NULL 211159.4078 1311.5491 161

Make it pretty
As with the ROLLUP clause, for both CUBE and
GROUPING SETS, you can make the results easier
to understand by using ISNULL() to replace the
nulls with meaningful descriptions. (Reminder:
ISNULL() is SQL Server’s equivalent to VFP’s
NVL().)

Listing11showsthequery from Listing4 withthe

Figure 7. When you exclude the grouping set that contains all aggregated fields,
the result contains only the summaries.

FoxRockX

descriptions added. Figure 8 shows partial results.
The query is included in this month’s downloads
as SalesByCountryCityCubeCombinedWDesc.sql.

Listing 11. You can replace the nulls that indicate summary
records with descriptions.

SELECT ISNULL (Person.CountryRegion.Name,
'All countries') AS Name,
ISNULL (Person.Address.City,
'All cities') AS City,
ISNULL (STR (YEAR (OrderDate)),
'All years') AS cYear,
ISNULL (STR (MONTH (OrderDate)),
'All months') AS cMonth,
SUM (SubTotal) AS TotalSales,
AVG (SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID =
Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID =
BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID =
Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvincelID =
StateProvince.StateProvinceID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode =

September 2014

CountryRegion.CountryRegionCode want, and then combining the results with UNION,
0NN ooiee-falesorderiicader works for CUBE and GROUPING SETS, as well. Of
SalesOrderfeader.CustomerID course, the resuling code is fairly opaque. That's

JOIN Sales.SalesOrderDetail why having these shortcuts in SQL Server is so nice.
ON SalesOrderHeader.SalesOrderID =
SalesOrderDetail.SalesOrderID

GROUP BY CUBE ((CountryRegion.Name, Author Profile
Address.City), . B

YEAR (orderDate) Tamar E. Granor, Ph.D. is the owner of Tomorrow s

MONTH (OrderDate)) Solutions, LLC. She has developed and enhanced

ORDER BY Name, City, c¥ear, clMonth numerous Visual FoxPro applications for busi-
nesses and other organizations. Tamar is author

or co-author of a dozen

Name City cYear cMonth TotalSales AvgSale NumSales

All countries All cities ~ All years 9 3649551.8024 8625742 4231 books including the award
All countries All cities All years 10 4014666.7773 884.6775 4538 winning Hacker’s Guide to
All countries All cities All years 11 41906342945 923.0472 4540 Visual FoxPro, Microsoft
All countries All cities All years 12 62331174491 10656723 5849 Office Automation with
All countries All cities Allyears Allmonths 59273769.3... 9803961 60459 Visual FoxPro and Tam-
Australia Bendigo 2005 7 20909.78 3484.9633 6 ing Visual FoxPro’s SQL.
Australia Bendigo 2005 9 357827 357827 1 Her latest collaboration is
Australia Bendigo 2005 10 6953.26 347663 2 VFPX: Open Source Trea-
Australia Bendigo 2005 11 357827 357827 1 sure for the VFP Devel-
Australia Bendigo 2005 12 6953.26 347663 2 oper, available at www.
Australia Bendigo 2005 Allmonths 41972.84 3497.7366 12 Joxrockx.com. Her other
Australia Bendigo 2006 1 10734 81 357827 3 books are available from
Australia Bendigo 2006 2 10734.81 357827 3 Hentzenwerke Publishing
Australia Bendigo 2006 3 357827 357827 1 (www.hentzenwerke.com).
Australia Bendigo 2006 4 357827 357827 1 Tamar was a Microsoft

Support Most Valuable

Figure 8. You can use ISNULL() to substitute descriptions for nulls, and make the results easier to Professionalfrom the pro-

comprehend. gram's inception in 1993
until 2011. She is one of the
organizers of the annual

What about VFP? Southwest Fox conference. In 2007, Tamar received

My last article showed how you do the equivalent the Visual FoxPro Community Lifetime Achievement

of ROLLUP in VFP. The second approach shown

Award. You can reach her at tamar@thegranors.
there, using a separate query for each summary you

com or through www.tomorrowssolutionsllc.com.

