Summarizing aggregated

data, Part 1

SQL Server’s ROLLUP clause lets you put totals, averages and more from subsets of your

computed dta right into the same cursor.

Tamar E. Granor, Ph.D.

This series of articles looks at features of SQL Server
that make some tasks easier than they are with
VFP’s SQL sublanguage. Over the next two issues,
we explore ways to provide summary results for
all data and larger subgroups of your data as part
of query results. In this issue, we look at ROLLUP.

SQL SELECT’s GROUP BY clause makes it easy to
aggregate data in a query. Just include the fields
that specify the groups and some fields using the
aggregate functions (COUNT, SUM, AVG, MIN,
MAX in VFP; SQL Server has a few more).

For example, the query in Listing 1 (TotalsBy-
CountryCity.PRG in this month’s downloads) fills
a cursor with sales for each city for each month;
Figure 1 shows partial results.

Listing 1. This query computes total sales for each combina-
tion of country, city, year and month.

SELECT Country, ;
City,
YEAR (OrderDate) AS OrderYear, ;
MONTH (OrderDate) AS OrderMonth, ;
SUM (Quantity * OrderDetails.UnitPrice);
AS nTotal ;
AVG (Quantity * OrderDetails.UnitPrice);
AS nAvg, ;
COUNT (*) AS nCount ;
FROM Customers ;
JOIN Orders ;
ON Customers.CustomerID = ;
Orders.CustomerID ;

JOIN OrderDetails ;
ON Orders.OrderID = ;
OrderDetails.OrderID ;
GROUP BY OrderYear, OrderMonth, ;
Country, City ;
ORDER BY Country, City, ;
OrderYear, OrderMonth ;
INTO CURSOR csrCtyTotals

You can do an analogous query using the SQL
Server AdventureWorks 2008 database, though it
involves a lot more tables because the Adventure-
Works database covers a wider range of data than
just sales. Listing 2 (SalesByCountryCity.SQL in
this month’s downloads) shows the analogous SQL
Server query.

Listing 2. Aggregating the data with SQL Server’s Adventure-
Works 2008 database is more verbose, but contains the same
elements.

SELECT Person.CountryRegion.Name,
Person.Address.City,
YEAR (OrderDate) AS nYear,
MONTH (OrderDate) AS nMonth,
SUM (SubTotal) AS TotalSales
AVG (SubTotal) AS AvgSale,
COUNT (*) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID =
Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID =
BusinessEntityAddress.BusinessEntityID

Country City Orderyear Ordermonth Ntotal Navg Ncount
Buenos hires 1997 1 319.2000 159.6000 2]]
Argentina Buenos RAires 1997 2 443.4000 221.7000 2
Argentina Buenos Aires 1997 4 225.5000 75.1667 3
Argentina Buenos Aires 1997 S 110.0000 110.0000 1
Argentina Buenos Aires 1997 10 706.0000 235.3333 3
Argentina Buenos Aires 1997 12 12.5000 12.5000 1
Argentina Buenos Aires 1998 1 1409.0000 352.2500 4
Argentina Buenos Aires 1998 2 866.7000 173.3400 5
Argentina Buenos Aires 1998 3 3645.8000 405.0889 9
Argentina Buenos Aires 1998 4 381.0000 95.2500 4
Austria |Graz 1996 i 4483.4000 640.4857 7
Rustria iGraz 1996 11 7511.8000 938.9750 8
Rustria iGraz 1996 12 5175.2000 515.0222 9
Bustria Graz 1997 1 9515.4000 1189.4250 8

Figure 1. The query in Listing 1 computes the total sales for each city in each month.

Page 14 FoxRockX

July 2014

JOIN Person.Address
ON BusinessEntityAddress.AddressID
Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvincelID =
StateProvince.StateProvinceID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode
CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID =
SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID =
SalesOrderDetail.SalesOrderID
GROUP BY CountryRegion.Name, Address.City,
YEAR (OrderDate), MONTH (OrderDate))

The rules for grouping are pretty simple. The
field list contains two types of fields, those to group
on, and those that are being aggregated. In the
VFP example, the fields to group on are Country,
City, OrderYear and OrderMonth, and the aggre-
gated fields are nTotal, nAvg and nCount. The SQL
Server query has the same list, but the field names
are different. (Before VFP 8, you could include
fields in the list that were neither grouped on nor
aggregated, but doing so could give you mislead-
ing results. This article on my website explains the
problem in detail: http:/ /tinyurl.com/leydyqw.)

Computing group totals

What the basic query doesn’t give you, though, is
aggregation (that is, summaries) at any level except
the one you specify. That is, while you get the total,
average and count for a specific city in a specific
month, you don’t get them for that city for the

whole year, or for that month for a whole country,
and so on. Figure 2 shows what we're looking for.
At the end of each year, a new record shows the
total, average and count for that year. At the end
of each city, another record shows the city’s total,
average and count and at the end of each country,
yet another record has country-wide results.

In VFP, there are three ways to get that data.
One is to create a report and use totals and report
variables to compute and report that data, but of
course, then you only have the data as output, not
in a VFP cursor.

The second choice is to use Xbase code to
compute them based on the initial cursor. Listing
3 (WithGroupTotalsXbase.PRG in this month’s
downloads) shows how to do this; it assumes
you've already run the query in Listing 1. It keeps
running totals and counts for each level: year,
city, country and overall. Then, when one of those
changes, it inserts the appropriate record.

Listing 3. You can add subgroup aggregates by looping
through the cursor.

LOCAL nYearTotal, nCityTotal, ;
nCountryTotal, nGrandTotal

LOCAL nYearCnt, nCityCnt, ;
nCountryCount, nGrandCount

LOCAL nCurYear, cCurCity, cCurCountry

* Create a new cursor to hold the results
SELECT * ;

FROM csrCtyTotals ;

WHERE .F. ;

INTO CURSOR csrWithGroupTotals READWRITE

SELECT csrCtyTotals
STORE 0 TO nYearTotal, nCityTotal, ;

Country City Orderyear Ordermonth Ntotal Navg Ncount
Austria | .NULL. .NULL. .NULL. 139496.6300 877.3373 159
Belgium :Bruxelles 1997 946.0000 315.3333 3
Belgium |Bruxelles 1997 8 1434.0000 717.0000 2
Belgium :Bruxelles 1997 12 3304.0000 1101.3333 3
Belgium |Bruxelles 1997 .NULL. 5684.0000 710.5000 8
Belgium :Bruxelles 1998 2 2950.5000 983.5000 3
Belgium |Bruxelles 1998 1500.7000 375.1750 4
Belgium |Bruxelles 1998 4 295.3800 147.6900 2
Belgium :Bruxelles 1998 .NULL. 4746.5800 527.3978 9
Belgium |Bruxelles .NULL. .NULL. 10430.5800 613.5635 17
Belgium |Charleroi 1996 7 3730.0000 1243.3333 3
Belgium :Charleroi 1996 2708.8000 902.9333 3
Belgium |Charleroi 1996 .NULL. 6438.8000 1073.1333 6
Belgium |Charleroi 1997 2 3891.0000 778.2000 <)
Belgium ;Charleroi 1997 2484.1000 496.8200 5
Belgium |Charleroi 1997 12 28.0000 28.0000 1
Belgium iCharleroi 1997 .NULL. 6403.1000 582.1000 11
Belgium ;Charleroi 1998 1 5693.0000 813.2857 7
Belgium ;Charleroi 1998 2 1209.0000 302.2500 4
Belgium |Charleroi 1998 3 2455.0000 613.7500 4
Belgium ;Charleroi 1998 4 2505.5000 357.9286

Belgium |Charleroi 1998 .NULL. 11862.5000 539.2045 22
Belgium :Charleroi .NULL. .NULL. 24704.4000 633.4462 39
Belgium | .NULL. .NULL. .NULL. 35134.9800 163.4185 215

Figure 2. It can be useful to have group totals in the same cursor as the original data.

July 2014

FoxRockX Page 15

nCountryTotal, nGrandTotal csrCtyTotals.nTotal

STORE 0 TO nYearCount, nCityCount, ; nCountryCount = m.nCountryCount + ;
nCountryCount, nGrandCount csrCtyTotals.nCount
nCurYear = csrCtyTotals.OrderYear nGrandTotal = m.nGrandTotal + ;
cCurCity = csrCtyTotals.City csrCtyTotals.nTotal
cCurCountry = csrCtyTotals.Country nGrandCount = m.nGrandCount + ;
csrCtyTotals.nCount
SCAN
* First check for end of year, ENDSCAN
* but could be same year and change of city
* or country. * Now insert grand totals
IF csrCtyTotals.OrderYear <> m.nCurYear OR ; INSERT INTO csrWithGroupTotals ;
NOT (csrCtyTotals.City == m.cCurCity) OR; VALUES (.null., .null., .null., .null., ;
NOT (csrCtyTotals.Country == ; m.nGrandTotal, ;
m.cCurCountry) m.nGrandTotal/m.nGrandCount, ;
INSERT INTO csrWithGroupTotals ; m.nGrandCount)
VALUES (m.cCurCountry, m.cCurCity, ;
m.nCur¥ear, .null., ; The third choice is to do a series of queries,
m.nYearTotal, ; . : :
each grouping on different levels and then consoli-
m.nYearTotal/m.nYearCount, ; . .
m.nYearCount) date the results. Listing 4 shows this version of the
m.nCurYear = csrCtyTotals.OrderYear code; as in the previous example, it assumes you've
STORE 0 TO m.nYearTotal, m.nYearCount already run the query that creates csrCtyTotals.
. , This code creates a cursor with each city’s annual
Now check for change of city . ., .
IF NOT (csrCtyTotals.City == m.cCurCity) ; totals, one with each city’s overall totals, one with
OR ; each country’s overall totals, and one containing
NOT (CsrgtyTOtalS -Country == ; the grand total. Then it uses UNION to combine all
m.cCurCountry) . . ;s . .
INSERT INTO csrWithGroupTotals : the res’ults into a single cgrsor. It's included in this
VALUES (m.cCurCountry, ; month’s downloads as WithGroupTotalsSQL.PRG.

m.cCurCity, ;
.null., .null., ;
m.nCityTotal, ;

Listing 4. You can add the yearly, city-wide and country-wide
totals using SQL, as well.

m.nCityTotal/m.nCityCount, ; * Now year totals by city
m.nCityCount) SELECT Country, City, OrderYear, ;
m.cCurCity = csrCtyTotals.City 999 as OrderMonth, ;
STORE 0 TO m.nCityTotal, ; SUM (nTotal) AS nTotal, ;
m.nCityCount SUM (nTotal) /SUM (nCount) AS nAvg, ;
SUM (nCount) AS nCount ;
* Now check for change of country FROM csrCtyTotals ;
IF NOT (csrCtyTotals.Country == ; GROUP BY Country, City, OrderYear ;
m.cCurCountry) INTO CURSOR csrYearTotals
INSERT INTO csrWithGroupTotals ;
VALUES (m.cCurCountry, .null., , * Now city totals by year
.null., .null., ; SELECT Country, City, ;
m.nCountryTotal, ; 99999 AS OrderYear, ;
m.nCountryTotal/m.nCountryCount, ; 999 as OrderMonth, ;
m.nCountryCount) SUM (nTotal) AS nTotal, ;
m.cCurCountry = ; SUM (nTotal) /SUM (nCount) AS nAvg, ;
csrCtyTotals.Country SUM (nCount) AS nCount ;
STORE 0 TO m.nCountryTotal, ; FROM csrCtyTotals ;
m.CountryCount GROUP BY Country, City ;
ENDIF INTO CURSOR csrCityTotals
ENDIF
ENDIF * Now year totals
SELECT Country, ;
* Now handle current record REPLICATE('Zz', 15) AS City, ;
INSERT INTO csrWithGroupTotals ; 99999 AS OrderYear, ;

VALUES (csrCtyTotals.Country, ; 999 as OrderMonth, ;
csrCtyTotals.City, ; SUM (nTotal) AS nTotal, ;
csrCtyTotals.OrderYear, ; SUM (nTotal) /SUM (nCount) AS nAvg, ;
csrCtyTotals.OrderMonth, ; SUM (nCount) AS nCount ;
csrCtyTotals.nTotal, ; FROM csrCtyTotals ;
csrCtyTotals.nAvg, ; GROUP BY Country ;
csrCtyTotals.nCount) INTO CURSOR csrCountryTotals

nYearTotal = m.nYearTotal + ;
csrCtyTotals.nTotal * Now grand total

nYearCount = m.nYearCount + ; SELECT REPLICATE('Z', 15) AS Country, ;
csrCtyTotals.nCount REPLICATE('Zz', 15) AS City, ;

nCityTotal = m.nCityTotal + ; 99999 AS OrderYear, ;
csrCtyTotals.nTotal 999 as OrderMonth, ;

nCityCount = m.nCityCount + ; SUM (nTotal) AS nTotal, ;
csrCtyTotals.nCount SUM (nTotal) /SUM (nCount) AS nAvg, ;

nCountryTotal = m.nCountryTotal + ; SUM (nCount) AS nCount ;

Page 16 FoxRockX July 2014

FROM csrCtyTotals ;
INTO CURSOR csrGrandTotal

* Create one cursor
SELECT * ;
FROM csrCtyTotals ;
UNION ALL ;
SELECT * ;
FROM csrYearTotals ;
UNION ALL ;
SELECT * ;
FROM csrCityTotals ;
UNION ALL ;
SELECT * ;
FROM csrCountryTotals ;
UNION ALL ;
SELECT * ;
FROM csrGrandTotal ;
ORDER BY Country, City, ;
OrderYear, OrderMonth ;
INTO CURSOR csrWithGroupTotals READWRITE

UPDATE csrWithGroupTotals ;
SET OrderMonth = .null. ;
WHERE OrderMonth = 999

UPDATE csrWithGroupTotals ;
SET OrderYear = .null. ;
WHERE OrderYear = 99999

AVG (SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonID =
Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID =
BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID =
Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvinceID =
StateProvince.StateProvinceID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode
CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID =
SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID =
SalesOrderDetail.SalesOrderID
GROUP BY ROLLUP (CountryRegion.Name,
Address.City,
YEAR (OrderDate) ,
MONTH (OrderDate))

UPDATE csrWithGroupTotals ; Name =
SET City = .null. ; Australia
WHERE City = REPLICATE('Z', 15) Australia

UPDATE csrWithGroupTotals ; Australia
SET Country = .null. ; Australia
WHERE Country = REPLICATE('Z', Australia

15) .

Australia

There’s one trick in this code. If Australia

we put null into the fields that are Australia
irrelevant for a given total, when Australia
we sort the result, the totals appear australia
above rather than below the records ctralia

Fhey represent. Instead, we put an =, . .

impossible value that sorts to the ,

. . Australia

bottom initially, then change it to T

. ustralia
null after ordering the data. ,
Australia

Introducing ROLLUP

Of course, the reason for showing all
this code is that SQL Server makes it

City
Caloundra
Caloundra
Caloundra
Caloundra
Caloundra
Caloundra
Caloundra
Caloundra
Caloundra
Caloundra
Cloverd...
Cloverd...
Cloverd...
Cloverd...
Cloverd...

nYear nMonth TotalSales AvgSale NumSales
2007 NULL 203478.1... 12257718 166
2008 1 19240.68 962.034 20
2008 2 31246.21 801.1848 39
2008 3 50989.52 1456.8434 35
2008 4 50096.48 1192.7733 42
2008 5 3439528 1433.1366 24
2008 6 2524312 901.54 28
2008 7 49428 61.785 8
2008 NULL 21170557 1080.1304 196
NU... NULL 527130.8... 13015576 405
2005 8 3399.99 3399.99 1
2005 10 3374.99 3374.99 1
2005 11 3578.27 3578.27 1
2005 12 6953.26 3476.63 2
2005 NULL 17306.51 3461302 5

Figure 3. In SQL Server, it's easy to compute aggregates for subgroups.

much easier. The ROLLUP clause lets you compute
these summaries as part of the original query.

ROLLUP appears in the GROUP BY clause,
looking like a function around the fields you want
toapply it to. Listing 5 shows the SQL Server equiv-
alent of Listing 3 and Listing 4; the code is included
in this month’s downloads as SalesByCountryCity-
Rollup.SQL. Figure 3 shows partial results.

Listing 5. SQL Server's ROLLUP clause computes the sub-
group aggregates as part of the query.

SELECT Person.CountryRegion.Name,
Person.Address.City,
YEAR (OrderDate) AS nYear,
MONTH (OrderDate) AS nMonth,
SUM (SubTotal) AS TotalSales,

July 2014

FoxRockX

The order of the fields in the ROLLUP clause
matters. The last one listed is summarized first.
In Figure 3, you can see that the first level of sum-
mary is the whole year for a given city and coun-
try, because the month column is listed last. If you
change the order in the ROLLUP clause to put the
city last, as in Listing 6, the first summary level is a
single month (and year), across all cities in a coun-
try; Figure 4 shows partial results.

Listing 6. The order of the fields in the ROLLUP clause mat-
ters. Changing the order changes what summaries you get.
GROUP BY ROLLUP (CountryRegion.Name,

YEAR (OrderDate) ,

MONTH (OrderDate) ,

Address.City)

Page 17

Name City nYear nMonth TotalSales AvgSale NumSales ROLLUP with cross-
Australia Townsville 2008 7 66.11 13.222 5 prOd u CtS
Australia Warrnambool 2008 7 660.20 73.3555 9 You can use two ROLLUP clauses
Australia Wollongong 2008 7 367.84 91.96 4 in the same GROUP BY. Doing so
Australia NULL 2008 7 2355563 63.1518 373 gives you the cross-product of
Australia NULL 2008 NULL 6786807.30 1004.4113 6757 the two groups. That is, you get
Australia NULL NU.. NULL 16322659.. 1223.1292 13345 the results you'd get from either
Canada Haney 2005 7 3578.27 3578.27 1 ROLLUP, but you also get combi-
Canada Metchosin 2005 7 3578.27 357827 1 nations of the two.
Canada N.Vancouver 2005 7 3578.27 357827 1 For example, if you change
Canada Newton 2005 7 3374.99 337499 1 the GROUP BY clause in Listing 5
Canada Royal Osk 2005 7 357827 357827 1 to the one shown in Listing &, you
Canada Shawnee 2005 7 42773682 2138.6841 2 get all the rows you had before,
Canada NULL 2005 7 219654382 3137.9197 7 but you also get summaries for
each country for each month and
Canada Burnaby 2005 8 3578.27 3578.27 1

Figure 4. When you change the order of fields in the ROLLUP clause, you get a different

set of summaries.

The ROLLUP clause doesn’t have to surround
all the fields in the GROUP BY, only the ones for
which you want summaries. So, if you don’t need
a grand total in the previous example, you can put
CountryRegion.Name before the ROLLUP clause,
as in Listing 7. Similarly, if you want summaries
only for each city and year, put both CountryRe-
gion.Name and Address.City before the ROLLUP
clause. You can also put fields after the ROLLUP
clause, but in my testing, the results aren’t terribly
useful.

Listing 7. Not all fields have to be included in ROLLUP, just
those that should be summarized. With this GROUP BY clause,
the results won't include grand totals because we’re not rolling
up the country.

GROUP BY CountryRegion.Name,
ROLLUP (Address.City,

YEAR (OrderDate),

MONTH (OrderDate))

Name City nYear nMonth TotalSales
United King... NULL 2008 6 77704113
United King... NULL 2008 7 1194284
United King... NULL 2008 NULL 3403936.78
United States NULL 2008 1 1241090.59
United States NULL 2008 2 1417644 .54
United States NULL 2008 3 1407198.05
United States NULL 2008 4 1457717.98
United States NULL 2008 5 2066050.29
United States NULL 2008 6 1926201.99
United States NULL 2008 7 52011.40
United States NULL 2008 NULL 9567914.84
NULL NULL 2008 NULL 27419405..
NULL NULL 2006 9 350466.9...
NULL NULL 2007 4 507965.2...

Figure 5. Using the GROUP BY clause in Listing 8 with the earlier query provides summaries for
not just each city by year, each city overall, and each country, but also for each country by month

and by year, and for each month and each year.

Page 18

AvgSale

FoxRockX

year, as well as overall summa-
ries for each month and for each
year. Figure 5 shows part of the
results. The complete query is
included in this month’s down-
loads as SalesByCountryCityRollupXProd.SQL.

Listing 8. You can use two ROLLUP clauses to generate the
cross-product of the two sets of fields.

GROUP BY ROLLUP (YEAR (OrderDate),
MONTH (OrderDate)),
ROLLUP (CountryRegion.Name,
Address.City)

As with a single ROLLUP clause, the order in
which you list the ROLLUP clauses and the order
of the fields within them determines both what
summaries you get and the order of the records in
the result (if you don’t use an ORDER BY clause).

Adding descriptions to

summaries
In all the examples so far, the null value indicates
which field is being summarized. But you can put
descriptive data in those fields instead.

Wrap the columns being
rolled up with ISNULL() and

specify the string you want
in the summary rows as the

NumSales
1137.6883 683
60.6235 197

951.0859 3579 .
783.0224 1535 alternate. (ISNULI_j() in SQ,L
Bt | Server behaves like VFP’s
NVL() function, returning the
8316773 | 1692 first parameter unless it’s null,
807.1528 | 1806 in which case it returns the
979.1707 2110 second parameter.) Listing 9
965.031 1996 (SalesByCountryCityRollup-
63.2742 822 WDesc.SQL in this month’s
8202944 11664 downloads) shows the same
848.9505 32298 query as Listing 5, except that

each of the non-aggregated
fields includes a description
to use when it's summarized.
Doing so requires changing

1770.0353 198
1716.0988 296

July 2014

the year and month columns to character, of course.
Figure 6 shows a chunk of the results.

Listing 9. Rather than having null indicate a summary row, use
the description you want.

SELECT ISNULL (Person.CountryRegion.Name,
'All countries') AS Country,
ISNULL (Person.Address.City,
'All cities') AS City,
ISNULL (STR (YEAR (OrderDate)),
'All years') AS OrderYear,
ISNULL (STR (MONTH (OrderDate)),
'All months') AS OrderMonth,
SUM (SubTotal) AS TotalSales,
AVG (SubTotal) AS AvgSale,
COUNT (SubTotal) AS NumSales
FROM Sales.Customer
JOIN Person.Person
ON Customer.PersonlID =
Person.BusinessEntityID
JOIN Person.BusinessEntityAddress
ON Person.BusinessEntityID =
BusinessEntityAddress.BusinessEntityID
JOIN Person.Address
ON BusinessEntityAddress.AddressID =
Address.AddressID
JOIN Person.StateProvince
ON Address.StateProvincelID =
StateProvince.StateProvincelID
JOIN Person.CountryRegion
ON StateProvince.CountryRegionCode =

CountryRegion.CountryRegionCode
JOIN Sales.SalesOrderHeader
ON Customer.CustomerID =
SalesOrderHeader.CustomerID
JOIN Sales.SalesOrderDetail
ON SalesOrderHeader.SalesOrderID =
SalesOrderDetail.SalesOrderID
GROUP BY ROLLUP (CountryRegion.Name,
Address.City,
YEAR (OrderDate),
MONTH (OrderDate))

More to come

In my next article, I'll look at additional ways to
summarize results in SQL Server using the CUBE
and GROUPING SETS clauses.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPros SOL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available

Country City OrderY... OrderMo... TotalSales
Australia Wollongong 2008 2 29543.26
Australia Wollongong 2008 3 46330.36
Australia Wollongong 2008 - 42357.88
Australia Wollongong 2008 5 39493.51
Australia Wollongong 2008 6 64000.30
Australia Wollongong 2008 7 367.84
Australia Wollongong 2008 Allmonths 268554.13
Australia Wollongong Allyears Allmonths 6182574 .
Australia All cities Allyears Allmonths 16322659...
Canada Burnaby 2005 8 3578.27
Canada Burnaby 2005 Allmonths 3578.27
Canada Burnaby 2006 3 3578.27
Canada Burnaby 2006 5 3578.27

AvgSale NumSales o/ oy, foxrockx.com. Her
1477.163 20 other books are available
1494.5277 31 from Hentzenwerke Pub-
1033.119 41 lishing (www.hentzenwerke.
1128386 35 com). Tamar was a Micro-
1280.006 50 soft Support Most Valuable
9196 4 Professional from the pro-
1272.7683 211 grafn’s inceptiqn in 1993
15042761 411 until 2'011. She is one of the
A5o5 Y500 | oanr organizers of the annual

Southwest Fox conference.
357827 L In 2007, Tamar received
3578.27 1 the Visual FoxPro Commu-
3578.27 1 nity Lifetime Achievement
3578.27 1 Award. You can reach her at

Figure 6. Including descriptions instead of null makes it easier to understand the summary lines.

tamar@thegranors.com
or through www.
tomorrowssolutionsllc.com.

