
Page 6 FoxRockX January 2012

Speed Up Your SQL Code
VFP's SQL commands can be blazingly fast, but you have to set things 
up right.

Tamar E. Granor, Ph.D.
In my last article, I talked about the two functions 
in VFP that allow you to measure the optimization 
of SQL commands. This month, I’ll look at what 
you can do to improve performance once you know 
that a query is sub-optimal.
As I explained last time, VFP’s Rushmore engine 
uses indexes to optimize queries and other com-
mands. Not surprisingly then, ensuring you have 
appropriate indexes and then exploiting them in 
your queries is the path to great performance.

Having the right tags
When a command filters on a condition and there's 
an index for that condition, Rushmore uses the 
index to find the matching records rather than 
searching sequentially through the table. In almost 
every case, reading the index is faster than reading 
the actual records.

For Rushmore to use an index, the index 
expression must exactly match the expression in 
the command. For example, using the Northwind 
Customers table, the query in Listing 1 is not fully 
optimized because the index based on the City field 
uses the key expression UPPER(City). The alternate 
version of the query in Listing 2 is optimized.
Listing 1. When the expression you’re matching in a WHERE 
clause isn’t identical to the key expression for an index, that 
filter condition can’t be optimized.
SELECT CustomerID, CompanyName ;
 FROM Customers ;
 WHERE City="London" ;
 INTO CURSOR csrLondoners

Listing 2. Use the exact index key to get Rushmore optimiza-
tion.
SELECT CustomerID, CompanyName ;
 FROM Customers ;
 WHERE UPPER(City)="LONDON" ;
 INTO CURSOR csrLondoners

Because the Customer table is quite small, 
the actual performance difference between the 
two versions is also small, but for large tables, 
matching the index can have a significant impact 
on performance.

If an index is based on several fields, you need to 
use the exact index expression in the command. The 
Northwind database doesn’t offer a good example 
of this, but consider a Person table including fields 
cFirst and cLast and an index tag on the full name 

using the expression UPPER(cLast + cFirst). In that 
case, the query in Listing 3 is not optimized, but the 
query in Listing 4 is. In my tests, the second query 
runs in about one-third the time of the first. 
Listing 3. This query can’t be fully optimized because the filter 
condition doesn’t match the index.
SELECT cFirst - (" " + cLast) AS FullName ;
   FROM Person ;
   WHERE UPPER(cLast) = "N" ;
   INTO CURSOR csrNamesWithN

Listing 4. Even if you only want to match part of a combined 
index, use the entire index expression for optimization.
SELECT cFirst - (" " + cLast) AS FullName ;
   FROM Person ;
   WHERE UPPER(cLast + cFirst) = "N" ;
   INTO CURSOR csrNamesWithN

Rushmore cannot use any indexes that are 
filtered, that is, created with a FOR clause in the 
INDEX command. It also cannot use any indexes 
that include the NOT operator; instead, index on 
the expression without NOT and apply NOT in the 
filter condition.

Expressions involving BETWEEN() and 
INLIST() are optimized if the first parameter can be 
optimized; the same is true for the corresponding 
SQL operators. However, expressions involving 
ISBLANK() and EMPTY() cannot be optimized, 
regardless of the parameter.

As with VFP‘s Xbase commands, in a filter 
expression the optimizable expression (the one that 
exactly matches an index) must be on the left-hand 
side of the comparison. However, for join conditions 
in the FROM clause, VFP looks at both sides of the 
expression and chooses which index to use.

When the WHERE clause contains multiple 
conditions combined with AND and OR, each 
condition is considered separately. Those that can be 
optimized are; the remaining conditions are checked 
against the records that match the optimizable 
conditions. VFP 9 improved optimization in queries 
involving complex conditions using OR.

In Listing 5, only those records where the City 
field contains “London” are read into memory. 
Then, each is checked to see that the Country field 
contains “UK” and those from other countries are 
eliminated. The number of records to check this 
way is quite small and should have only a minimal 
impact on performance.



January 2012 FoxRockX Page 7

Listing 5. VFP optimizes what it can, and then checks the re-
maining conditions sequentially.
SELECT CompanyName ;
 FROM Customers ;
 WHERE Country = "UK" ;
   AND UPPER(City) = "LONDON" ;
 INTO CURSOR csrLondonEngland

VFP’s optimization trick
VFP tries to give you results as fast as possible. How-
ever, in one situation, that goal can be a problem. 
When a query uses a single table, has only fields 
from that table in the field list (and no expressions 
or literals), puts the results into a cursor, and can be 
fully optimized, VFP filters the source table rather 
than creating a new file on disk. In some cases, such 
as reporting, this isn’t a problem. But if you want to 
use that cursor in a subsequent query or display it 
in a grid, this trick causes problems.

You can check whether VFP has taken this 
route by examining DBF() for the resulting cursor. 
The code in Listing 6 demonstrates, using the 
queries from Listing 1 and Listing 2. If you see a 
temporary file for both queries, SET DELETED OFF 
and try again. (See the next section, “Deletion and 
Optimization” for an explanation.)
Listing 6. Some very simple queries based on a single table 
filter the original table rather than creating a new disk presence.
OPEN DATABASE HOME(2) + "Northwind\Northwind"

SELECT CustomerID, CompanyName ;
 FROM Customers ;
 WHERE UPPER(City)="LONDON" ;
 INTO CURSOR csrLondoners
?‘With fully optimized query, ‚ + ; 
 ‚DBF(„Londoners“) = ‚, DBF("Londoners")

SELECT CustomerID, CompanyName ;
 FROM Customers ;
 WHERE City="London" ;
 INTO CURSOR csrLondoners
?‘With unoptimized query, ‚ + ;
 ‚DBF(„Londoners“) = ‚, DBF("Londoners")

In FoxPro 2.x and early versions of VFP, the 
only ways to work around VFP’s good intentions 
were to force the query to be not fully optimized or 
to add an expression to the field list. Fortunately, the 
VFP team realized that there are legitimate reasons 
for preventing this trick. In VFP 5, the NOFILTER 
keyword was added; use it after INTO CURSOR to 
tell VFP to create a new file, no matter what, as in 
Listing 7. In addition, the READWRITE keyword 
added in VFP 6 has the same effect; in order to 
ensure that the cursor can be modified, VFP has to 
create a new file.
Listing 7. Add the NOFILTER clause to force VFP to create a 
“real” cursor.
SELECT CustomerID, CompanyName ;
 FROM Customers ;
 WHERE UPPER(City)="LONDON" ;
 INTO CURSOR Londoners NOFILTER

Deletion and optimization
VFP uses a two-step deletion mechanism. When 
you delete a record, whether you use the Xbase 
DELETE command, the SQL DELETE command or 
the deletion column in a grid or Browse, the record 
is marked as deleted. It's not physically removed 
from the table until you pack the table using the 
PACK command.

Because of this structure, VFP includes the 
SET DELETED command that determines whether 
other commands see records marked for deletion. 
SET DELETED OFF to include deleted records in 
processing; SET DELETED ON to omit them.

Having SET DELETED ON is equivalent to 
filtering every command on the expression NOT 
DELETED(). For many years, therefore, the standard 
advice for those operating with DELETED ON 
was to create an index for each table based on the 
DELETED() function, so that the implied filter could 
be optimized.

However, it turns out that, while an index on 
DELETED() allows commands to be fully optimized, 
such commands can be slower than they would be 
without that index. (The article that explained this 
paradox is by Chris Probst and appeared in FoxPro 
Advisor in May, 1999; it was updated and reprinted 
in March 2005.) 

The issue is that there are only two possible 
values for this index and, most often, the vast 
majority of records have the same value (False). 
When Rushmore attempts to optimize the implied 
expression NOT DELETED(), it must read the whole 
portion of the index that corresponds to False. 
Especially in a network situation, loading that portion 
of the index into memory can take much longer than 
simply checking each record that meets all the other 
criteria to see whether it's deleted. (Keep in mind 
that filters that can't be optimized are checked after 
all the optimizable filters are applied, so in many 
cases, the number of records to check "manually" 
for deletion is quite small.) As a result, for a large 
table and a small result set, you're usually better off 
without an index based on the DELETED() function; 
the meaning of "large" and "small" depends on the 
amount of memory available.

VFP 9 changes the rules a little. The new binary 
index type is designed to create extremely small 
indexes for expressions with only two possible 
values. For example, on a test table with 1,000,000 
records, a regular index based on DELETED() 
resulted in an index file of 3,205,632 bytes. Using 
a binary index, instead, the file size was 135,168 
bytes. Clearly, reading the binary index is less likely 
to slow a command down.

For small tables where an index on DELETED() 
was already useful in optimization, a binary index 
speeds things up even more. Binary indexes also 
raise the threshold between tables where an index 
helps and those where an index hurts.



Page 8 FoxRockX January 2012

Binary indexes are only for optimization and can't 
be used for searching

Tuning memory
The Visual FoxPro engine knows how to use mem-
ory extremely efficiently, caching data to avoid 
time-consuming disk access. However, there's one 
situation where this ability can result in slow code; 
that's the case where VFP thinks it has memory, but 
is actually using page files on disk. 

When you start VFP, it figures out how much 
memory to use; normally it takes about half of the 
physical memory of the computer. However, with 
other applications (including Windows itself) run-
ning, there's a good chance that amount of physical 
memory isn't actually available, and that behind the 
scenes Windows is swapping out to disk. But VFP 
doesn't know it, so it makes decisions that assume 
all the memory it's using is physical memory.

Fortunately, you can control the amount of 
memory VFP thinks it has. The function SYS(3050) 
lets you set both the foreground and background 
memory available to VFP. The syntax is shown in 
Listing 8.
Listing 8. You can control how much memory VFP uses. 
Sometimes, giving it less memory than the default speeds up 
execution.
cMemoryInBytes = SYS(3050, nType [,
                     nMemoryInBytes ] )

Pass 1 for nType to set the amount of memory 
available when VFP is in control (in the foreground) 
and 2 to set the memory available to VFP when an-
other application is in the foreground. VFP rounds 
the value you pass for nMemoryInBytes down to 
the nearest 256K and allocates that much memory 
for itself. The function returns that value as a char-
acter string. Note that the value you pass is in bytes, 
not KB or GB.

VFP expert Mac Rubel did extensive testing 
of the effects of SYS(3050) with VFP 6 and VFP 
7 and discovered that most often, you want the 
foreground setting to be less than the default. You 
need to test in your production environment to find 
the right setting, but a good place to start is around 
one-third of physical memory.

Make code pages match
In VFP 9, if the current code page (as indicated by 
CPCURRENT()) is different from the code page of a 
table (indicated by CPDBF()), operations involving 
character expressions from that table cannot use 
existing indexes for optimization (though VFP may 
still build temporary indexes). While this may seem 
arbitrary, it's one of a number of changes in VFP 
8 and VFP 9 designed to prevent inaccurate query 
results.

An index is sorted according to the rules for the 
table's code page. Even if VFP translated from the 
table's code page to the current code page, the sort 
order might be different. This means comparisons to 
data using the current code page may be incorrect. 
This is what VFP's new rules prevent.

Although code pages are primarily used to 
handle different character sets, be aware that a table 
originally created in a DOS environment may be 
marked with the DOS code page (437) rather than 
the Windows ANSI code page (1252). You can use 
the CPZero.PRG program that comes with VFP to 
change the code page of those tables.

Make collation sequences match
Like code pages, collation sequences aid in work-
ing with languages other than English. A collation 
sequence indicates the sorting order of the charac-
ters. 

Every index is created with an associated 
collation sequence. For optimization, VFP can only 
use indexes created with the collation sequence in 
effect when the command executes. In other words, 
for VFP to take advantage of a tag, IDXCOLLATE() 
for that tag must match SET(“COLLATE”). This is 
true not only in VFP 9, but in earlier versions as 
well.

The bottom line
Index tags are the key to good performance in 
VFP’s SQL commands. If a query seems to be slow, 
test with SYS(3054) to see whether it’s optimized. If 
it’s not, tweak either the command or the set of tags 
you maintain until you get acceptable performance. 
Remember that tags do have consequences when 
inserting data into tables, so it’s not usually a good 
idea to add a tag for every field of every table.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s 
Solutions, LLC. She has developed and enhanced 
numerous Visual FoxPro applications for businesses 
and other organizations. She currently focuses on 
working with other developers through consulting and 
subcontracting. Tamar is author or co-author of nearly 
a dozen books including the award winning Hacker’s 
Guide to Visual FoxPro, Microsoft Office Automation 
with VisualFoxPro and Taming Visual FoxPro’s SQL. Her 
latest collaboration is Making Sense of Sedna and SP2. 
Her books are available from Hentzenwerke Publishing 
(www.hentzenwerke.com). Tamar was a Microsoft 
Support Most Valuable Professional from the program's 
inception until 2011; she is also one of the organizers 
of the annual Southwest Fox conference. In 2007, 
Tamar received the Visual FoxPro Community Lifetime 
Achievement Award. You can reach her at tamar@thegra-
nors.com or through www.tomorrowssolutionsllc.com.


