Solve date problems

SQL Server’s date and time functions make it easy to solve various date-
related problems, like finding the start and end dates of a period, finding
anniversaries in a specified period, and identifying weekdays in a period.

Tamar E. Granor, Ph.D.

In my last article, I explored the various date and
time types in SQL Server and the collection of func-
tions and operations you can use with them. In this
article, I'll look at some common date problems and
show how to solve them.

First, a quick review. SQL Server supports six data
types related to dates and times. Four of them are
variations on a combined date and time construct.
Three of those (SmallDateTime, DateTime and
DateTime2) vary only in precision. The fourth,
DateTimeOffset, is the same as DateTime2, but also
includes a timezone offset component. There are
also separate Date and Time types. For this article,
I'll refer to these in the aggregate as date/time.

There are functions for retrieving the current
date/time, computing the difference between date/
time values, calculating new date/time values from
existing ones, taking date/time values apart, and
constructing date/time values from their compo-
nents. I'll use a number of them in solving the prob-
lems in this article.

The examples use the Adventureworks 2014
sample database.

Find the first and last days of the
period

Given a date, it's not unusual to want to find the
first and last day of the containing week, month,
quarter, or year. For some of these periods, it’s easy
to build the start and end dates by pulling the given
date apart and creating a new one. For other peri-
ods, it’s trickier, but the DateAdd() and DateDiff()
functions provide a generic approach.

Let’s start with the easy way, which works for
months and years. First, as noted in my previous
article, the function EOMonth()gives you the last
day of the month for a specified date. To find the
first day of the month, you can extract the month
and year from the specified date and combine them
with a day of 1. A similar approach works for the
first and last day of the year. Listing 1 shows the
code; it’s included in this month’s downloads as
FirstLastSimple.SQL. Figure 1 shows the results. If
you want them as one of the other date/time types,

January 2017

use the appropriate DateTimexFromParts() func-
tion for the first of the month and the first and last
day of the year, and wrap EOMonth() with Cast()
or Convert() for the last day of the month.

Listing 1. There are simple ways to find the first and last day of
the month or the year containing a specified date.

DECLARE @Date Date;
SET @Date = '1/4/2017"';

SELECT DATEFROMPARTS (DATEPART (Year, @Date),
DATEPART (Month, @Date), 1) AS BoM,
EOMONTH (@Date) AS EoM,
DATEFROMPARTS (DATEPART (Year, @Date),
1, 1) AS BoY,
DATEFROMPARTS (DATEPART (Year, @Date),
12, 31) AS EoY;

BoM EoM BoY EoY

Figure 1. Finding the first and last day of the month or the
year is straightforward.

But this approach doesn’t work for the first and
last days of the week or the quarter, because we
don’t know what the appropriate days or months
are. Instead, we need to calculate those, and we can
do months and years the same way, if we wish.

The DateAdd() function lets us move a date/
time forward or backward by a number of years,
months, days, hours, etc. The DateDiff() func-
tion allows us to compute the difference between
two date/time values in whichever units we want
(though see my last article to understand exactly
how that works). We can combine them to figure
out the first or last day of the period containing a
particular date, as in Listing 2, where we find the
first and last day of the week. The code is included
in this month’s downloads as FirstLastOfWeek.
SQL.

Listing 2. You can combine DateAdd() and DateDiff() to com-
pute dates such as the first and last of the month.

DECLARE @Date Date;
SET @Date = '1/4/2017';

SELECT DATEADD (Week,

FoxRockX Page 7

DATEDIFF (Week, 0, @Date), 0) AS BoW,
DATEADD (DAY, -1, DATEADD (Week,

DATEDIFF (Week, 0, @Date) + 1, 0))

AS EoW;

Let's work out the first of week code first
because it's simpler. Working from the inside out,
DateDiff(Week, 0, @Date) computes the number
of weeks from SQL Server’s zero date (January 1,
1900) to the specified date. Then, the surrounding
DateAdd() adds that many weeks to the zero date,
resulting in the first day of the week containing @
Date.

The end of week calculation is similar, but a
little more complex. It computes the first day of the
week following the one containing the specified
date by doing the same DateDiff() calculation, add-
ing 1 and then applying DateAdd(). Then, it uses
DateAdd() a second time to subtract one day from
that date. (For the last day of the week, you could
also compute the first day of the week and then add
6.)

You can find the first and last day of the quar-
ter containing a particular date by changing every
occurrence of “Week” in that code to “Quarter,” as
in Listing 3 (included in this month’s downloads as
FirstLastofQuarter.SQL).

Listing 3. To find the first and last day of the year, just change
every occurrence of “Week” in the prior query to “Quarter”.

SELECT DATEADD (Quarter,
DATEDIFF (Quarter, 0, @Date), 0)
AS BoQ,
DATEADD (Day, -1, DATEADD (Quarter,
DATEDIFF (Quarter, 0, @Date) + 1, 0))
AS EoQ;

You can do use the same formulation for
months and years, too. Just specify the appropriate
datepart.

Birthdays and anniversaries

We often need to find those having an anniversary
during a given period. It might be people with a
birthday this week, those celebrating employment
anniversaries next month, and so on. The key point
here is that we're looking for dates where the month
and day match, but the year is irrelevant.

For simplicity, we'll use employee birthdays to
demonstrate the solutions here, but the same ideas
apply to any kind of anniversary dates. Let’s start
with finding every employee who has a birthday
on a given date. There are actually two good solu-
tions here. The first is to use DatePart() to extract
the month and day and compare them, as in Listing
4; this query is included as SameBirthDateDatePart.
SQL in this month’s downloads. Figure 2 shows
those employees whose birthday is January 4.

Listing 4. When you want to match day and month exactly, you
can just extract them with DatePart().

DECLARE @Date Date;

Page 8 FoxRockX

SET @Date = '1/4/2017';

SELECT FirstName, LastName,
Employee.BusinessEntityID, Birthdate
FROM [HumanResources].[Employee]
JOIN [Person].[Person]
ON Employee.BusinessEntityID =
Person.BusinessEntityID
WHERE DATEPART (Day, BirthDate) =
DATEPART (Day, @Date)
AND DATEPART (Month, BirthDate) =
DATEPART (Month, @Date)

FirstName LastName BusinessEntitylD BirthDate

| Rothkugel 133 1991-01-04
Barbara Moreland 245 1976-01-04
Erin Hagens 258 1971-01-04

Figure 2. It's easy to find out who shares a birthday.

The alternative approach to this problem uses
the technique from earlier in this article to convert
the birthdate to the birthday this year and compares
that to the specified date. Listing 5, included in this
month’s downloads as SameBirthDateDateAdd.
SQL, produces the same results as Listing 4.

Listing 5. An alternative way to find people with a given birth-
day uses DateAdd() and DateDiff().

DECLARE @Date Date;
SET @Date = '1/4/2017"';

SELECT FirstName, LastName,
Employee.BusinessEntityID, BirthDate
FROM [HumanResources].[Employee]
JOIN [Person].[Person]
ON Employee.BusinessEntityID =
Person.BusinessEntityID
WHERE DATEADD (Year, DATEDIFF (Year,
BirthDate, @Date), BirthDate) = @Date

We can extend this process to, for example, find
everyone with a birthday this week. The tricky part
of finding everyone with a birthday in a given week
is that the week can cross the boundaries of a year.

Let's start with a version of the query that
doesn’t account for crossing the end of the year.
Listing 6 (included in this month’s downloads as
SameWeekNoYearEnd.SQL) shows how to find
everyone with a birthday in the week beginning
on a specified date, as long as the week ends in the
same year it starts in. It uses the same expression as
the previous example to move the birthday into the
same year as the specified date. Figure 3 shows the
results for the date specified in the example, Janu-
ary 4, 2017.

Listing 6. If you don’t have to worry about crossing the end of

a year, finding all birthdays in the week beginning on a given
date is fairly simple.

DECLARE @Date Date;
SET @Date = '1/4/2017"';

SELECT FirstName, LastName,
Employee.BusinessEntityID, BirthDate

January 2017

FROM [HumanResources] . [Employee]
JOIN [Person].[Person]
ON Employee.BusinessEntityID =
Person.BusinessEntityID
WHERE DATEADD (YEAR, DATEDIFF (Year,
BirthDate, @Date), BirthDate)
BETWEEN @Date AND DATEADD (Day, 6, @Date)

FirstName LastName

BusinessEntitylD BirthDate

i James | Hamilton 25 1983-01-07
‘Brandon Heidepriem 35 1977-01-10
Thomas Michaels 45 1986-01-10
Michael Rothkugel 133 1991-01-04
Benjamin Martin 174 1986-01-05
Reed Koch 175 1989-01-08
Laura Norman 234 1976-01-06
Barbara Moreland 245 1976-01-04
Erin Hagens 258 1971-01-04
Dan Wilson 271 1976-01-06
Tete Mensa-Annan 284 1978-01-05

Figure 3. Moving the date into the current year lets you find all
birthdays in a specified week.

But what happens if we specify a date late in
December? We know from the previous example
that there are people with birthdays on January
4, but if we set @Date to “12/29/2017’, we get the
results shown in Figure 4.

FirstName LastName BusinessEntitylD BirthDate
’ 70 1984-12-29

Figure 4. At the end of the year, the simple test in Listing 6
doesn’t work.

To see what's causing the problem, we can add
the translated birthday to the field list and look for
only those records with January 4 birthdays, as in
the query in Listing 7; the results are shown in Fig-
ure 5.

Listing 7. By including the computed birthday this year in the
results, we can see why this version doesn’t work across the
end of a year.

SELECT FirstName, LastName,
Employee.BusinessEntityID, BirthDate,
DATEADD (YEAR, DATEDIFF (Year,

BirthDate, @Date), BirthDate)
FROM [HumanResources].[Employee]
JOIN [Person].[Person]
ON Employee.BusinessEntityID =
Person.BusinessEntityID
WHERE Month (BirthDate) = 1
AND Day (BirthDate) = 4

FirstName LastName BusinessEntit... BirthDate TransBDay
Rothkugel 133 1991-01-04 2017-01-04
Barbara Moreland 245 1976-01-04 2017-01-04
Erin Hagens 258 1971-01-04 2017-01-04

Figure 5. Looking at the translated birthday helps to show why
the expression using DateAdd() and DateDiff() isn’t sufficient.

January 2017

Using the DateAdd(...DateDiff()...) expression
moves the birthdate into 2017, the same year as the
specified date. But if we're looking for birthdays in
the week beginning December 29, we need the Janu-
ary birthdays to be translated into 2018. Doing that
requires a more complex expression using CASE;
it's shown in Listing & (included in this month’s
downloads as SameWeek.SQL). The CASE expres-
sion divides into two cases, based on whether the
birthday comes earlier or later in the year than the
specified date. If it comes later in the year, we just
translate to the same year. If it comes earlier in the
year, though, we translate to the next year.

Listing 8. To work across year-end, we need to figure out
whether the birthday is earlier or later in the year than the
specified date.

DECLARE @Date Date;
SET @Date = '1/4/2017"';

SELECT FirstName, LastName,

Employee.BusinessEntityID, BirthDate

FROM [HumanResources].[Employee]
JOIN [Person].[Person]
ON Employee.BusinessEntityID =
Person.BusinessEntityID
WHERE CASE
WHEN DATEPART (Month, Birthdate)
< DATEPART (Month, @Date)

OR (DATEPART (Month, Birthdate) =
DATEPART (Month, @Date) AND
DATEPART (Day, Birthdate) <
DATEPART (Day, @Date))

THEN DATEADD (Year, DATEDIFF (Year,
BirthDate, @Date) + 1, BirthDate)

ELSE DATEADD (Year, DATEDIFF (Year,
BirthDate, @Date), BirthDate) END

BETWEEN @Date AND DATEADD (Day, 6, @Date)

If we run the query as shown, with a specified
date of January 4, 2017, we get the same results as
in Figure 3. Moving the date into the current year
lets you find all birthdays in a specified week.. But
if we change the specified date to December 29,
2017, we get the results shown in Figure 6.

LastName BusinessEntit... BirthDate

i Ortiz 70 1984-12-29
Michael Rothkugel 133 1991-01-04
Ivo Salmre 135 1982-01-03
Barbara Moreland 245 1976-01-04
Erin Hagens 258 1971-01-04

Figure 6. With the more complicated date translation, we can
find all the birthdays in a specified week, even across the end
of the year.

The final thing we’d want here is to order the
results by birthday. To do that, we add an ORDER
BY clause using the same complex expression, as in
Listing 9; a version with this code is included in the
month’s downloads as SameWeekOrdered.SQL.
The results for a start date of December 29, 2017 are
shown in Figure 7.

FoxRockX Page 9

Listing 9. You can use the same date translation expression to
put the results in order.

ORDER BY CASE
WHEN DATEPART (Month, Birthdate)
< DATEPART (Month, @Date)
OR (DATEPART (Month, Birthdate) =
DATEPART (Month, @Date) AND
DATEPART (Day, Birthdate)
< DATEPART (Day, @Date))
THEN DATEADD (YEAR, DATEDIFF (YEAR, BirthDate,
@Date) + 1, BirthDate)
ELSE DATEADD (YEAR, DATEDIFF (YEAR, BirthDate,
@Date), BirthDate) END

FirstName LastName BusinessEntit... BirthDate

David i Ortiz 70 1984-12-29
Pa— —r— = T
Barbara Moreland 245 1976-01-04
Erin Hagens 258 1971-01-04
Michael Rothkugel 133 1991-01-04

Figure 7. We can sort the birthdays by using the same ex-
pression that translates them.

We can use the approach to find anyone with
a birthday between two specified dates. The only
difference is checking whether the translated date
is between the specified start and end dates, rather
than between the specified date and a calculated
end date; Listing 10 (included as BetweenDatesOr-
dered.SQL in this month’s downloads) shows the
code. The results are shown in Figure 8.

DECLARE @StartDate Date, @EndDate Date;

SET @StartDate = '12/15/2017"';
SET Q@EndDate = '1/15/2018';

SELECT FirstName, LastName,
Employee.BusinessEntityID, BirthDate
FROM [HumanResources] . [Employee]
JOIN [Person].[Person]
ON Employee.BusinessEntityID =
Person.BusinessEntityID
WHERE
CASE WHEN DATEPART (Month, Birthdate) <
DATEPART (Month, @StartDate)
OR (DATEPART (Month, Birthdate) =
DATEPART (Month, @StartDate) AND
DATEPART (Day, Birthdate) <
DATEPART (Day, @StartDate))
THEN DATEADD (YEAR, DATEDIFF (YEAR,
BirthDate, @StartDate) + 1,
BirthDate)
ELSE DATEADD (YEAR, DATEDIFF (YEAR,
BirthDate, @StartDate), BirthDate)
END
BETWEEN @StartDate AND @EndDate
ORDER BY
CASE WHEN DATEPART (Month, Birthdate) <
DATEPART (Month, @StartDate)
OR (DATEPART (Month, Birthdate) =
DATEPART (Month, @StartDate) AND
DATEPART (Day, Birthdate) <
DATEPART (Day, @StartDate))
THEN DATEADD (YEAR, DATEDIFF (YEAR,
BirthDate, @StartDate) + 1,

Page 10 FoxRockX

BirthDate)
ELSE DATEADD (YEAR, DATEDIFF (YEAR,
BirthDate, @StartDate), BirthDate)
END

'_'FirstName LastName BusinessEntit... BirthDate

Chris Preston 165 1988-12-16
‘Betsy Stadick 88 1966-12-17
Stuart Macrae 230 1971-12-17
Stefen Hesse 185 1975-12-21
Sairaj Uddin 223 1987-12-22
Patrick Cook 83 1973-12-23
Brian Goldstein 85 1970-12-23
Rob Walters 4 1974-12-23
Kevin Liu 195 1985-12-25
Karen Berge 220 1975-12-25
Laura Steele 162 1980-12-25
Michael Blythe 275 1968-12-25
Annik Stahl 33 1976-12-26
David Ortiz 70 1984-12-29
Ivo Salmre 135 1982-01-03
Michael Rothkugel 133 1991-01-04
Barbara Moreland 245 1976-01-04
Erin Hagens 258 1971-01-04
Tete Mensa-Annan 284 1978-01-05
Benjamin Martin 174 1986-01-05
Dan Wilson 271 1976-01-06
Laura Norman 234 1976-01-06
James Hamilton 25 1983-01-07
Reed Koch 175 1989-01-08
Brandon Heidepriem 35 1977-01-10
Thomas Michaels 45 1986-01-10
Syed Abbas 285 1975-01-11
Jeff Hay 160 1977-01-15

Figure 8. It's easy to get a list of everyone with birthdays (or
other kinds of anniversaries) between two dates.

Identifying weekdays
(and weekends)

Another common date problem is determining
which days in a specified period are weekdays (or
alternatively, weekend days). SQL Server’s date
functions make that easy.

One of the dateparts you can pass to DatePart()
is weekday; the function returns a number between
1 and 7 to indicate the day of the week of the date/
time you pass in. You can also use DateName() to
get the name of the day in the local language. So
the query in Listing 11 returns today’s date, its day
number, and its name; Figure 9 shows the results.

(No column name) (No column na... (No column na...
: 2017-01-05 10:44:37.177 5 Thursday

Figure 9. January 5, 2017 is a Thursday, the fifth day of the
week.

January 2017

Listing 11. DatePart() and DateName() let you find out the day
of the week of any date/time.

SELECT GetDate(),
DATEPART (weekday, GetDate()),
DATENAME (weekday, GetDate())

To get the day of the week for all dates between
specified start and end dates, first we need to gen-
erate the list of dates. We can do that with a recur-
sive CTE. (See my November, 2015 article for an
explanation of how this CTE works.) Then, we can
simply use DatePart() to find the day of the week
for each and keep only those we're interested in.
Listing 12 shows how; the code is included in this
month’s downloads as WeekDays.SQL. Figure 10
shows partial results.

Listing 12. To get a list of weekdays in a specified period,
generate all dates and keep only those with the right weekday
datepart.

DECLARE Q@StartDate Date, @EndDate Date;

SET @StartDate = '12/15/2016';
SET @EndDate = '1/15/2017';

WITH AllDates (tDate)
AS
(SELECT @StartDate
UNION ALL
SELECT DATEADD (DAY, 1, tDate)
FROM AllDates
WHERE tDate < QEndDate
)

SELECT tDate, DATENAME (WEEKDAY, tDate) AS DoW
FROM AllDates
WHERE DATEPART (WEEKDAY, tDate) NOT IN (1,7)

tDate DoW

. 2016-12-15 ; Thursday

2016-12-16 Friday
2016-12-19 Monday
2016-12-20 Tuesday
2016-12-21 Wednesday
2016-12-22 Thursday
2016-12-23 Friday
2016-12-26 Monday
2016-12-27 Tuesday
2016-12-28 Wednesday
2016-12-29 Thursday
2016-12-30 Friday
2017-01-02 Monday
2017-01-03 Tuesday
2017-01-04 Wednesday

Figure 10. This list includes only weekdays
in the specified period.

There’s just one wrinkle. The weekday value
returned by DatePart() is based on the SET DATE-
FIRST value. By default, in the US, it's 7, which
makes Sunday the first day. Thus, the query in List-

January 2017

FoxRockX

ing 12 omits days 1 and 7, Sunday and Saturday.
But with a different value for SET DATEFIRST, you
have to omit different day numbers.

To make the query locale-independent, we
need to compute the day of the week for Satur-
day and Sunday, and use the computed value. We
can do that with the system variable @@DateFirst,
which returns the current SET DATEFIRST value.
Listing 13 shows how to compute the day numbers
for Saturday and Sunday. Sunday is easier; just
subtract the first day from 8. So, with @@DateFirst
as 7 (Sunday), you get 1. When @@DateFirst is 1
(Monday), you get 7, and so forth.

For Saturday, it’s a little trickier. 7-@@DateFirst
does the job, except when @@DateFirst is 7 (Sun-
day). In that case, we want 7 for Saturday, but 7-@@
DateFirst gives us 0. So the code handles that case
separately.

Listing 13. We can calculate the day number for Saturday and
Sunday using the @@DateFirst variable.

SET @Sunday = 8-Q@@DATEFIRST;
SET @Saturday =
CASE WHEN Q@DATEFIRST = 7
THEN 7
ELSE 7-@@DATEFIRST END;

To make the query generic, we do these calcu-
lations first and then use the variables @Saturday
and @Sunday in the WHERE clause instead of con-
stants, as in Listing 14 (included as WeekdaysGe-
neric.SQL in this month’s downloads). To test that
this really works regardless of the DATEFIRST set-
ting, uncomment the SET DATEFIRST line in the
example and try a few different values.

Listing 14. You can get a list of weekdays without changing
your code, no matter how you've set DATEFIRST.

DECLARE @StartDate Date, @EndDate Date;

SET @StartDate = '12/15/2016';
SET @EndDate = '1/15/2017';

DECLARE @Saturday Int, @Sunday Int;
-- SET DateFirst 7;

SET @Sunday = 8-Q@@DATEFIRST;
SET @Saturday =
CASE WHEN Q@DATEFIRST = 7
THEN 7
ELSE 7-@@DATEFIRST END;

WITH AllDates (tDate)
AS
(SELECT @StartDate
UNION ALL
SELECT DATEADD (DAY, 1, tDate)
FROM AllDates
WHERE tDate < @EndDate
)

SELECT tDate, DATENAME (WEEKDAY, tDate) AS DoW
FROM AllDates
WHERE DATEPART (WEEKDAY, tDate)
NOT IN (@Saturday,@Sunday)

Page 11

You can just put the Saturday and Sunday cal-
culations in the query, rather than doing them first
and storing them in variables, but I think this ver-
sion is more readable.

Of course, to see weekend days only, just
change NOT IN to IN in the main query.

Try some yourself

With the techniques from this article and the previ-
ous one in hand, you should be able to tackle lots of
date/time challenges yourself. Let me know if you
come across any particularly interesting ones.

Author Profile

Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

