
August, 2002

Advisor Answers

Shutting down abandoned applications

VFP 7/6/5/3

Q: I'm using Automation to Word in an application. Occasionally,
things go wrong and Word is left running behind the scenes. Is there

any way I can find and kill all instances of Word that are not visible?

–John Hosier (Naperville, IL)

A: Not surprisingly, this is one of those problems that can't be solved
with just native VFP code. But the Windows API gives us the tools we

need.

As long as you have an object reference to an application you're

automating, you can control it, including shutting it down whether it's
visible or not. Once you make an automated application visible, the

user can shut it down manually. The problem occurs when your
application fails and leaves the automated application (Word, in your

case) running without making it visible.

Here are the steps we need to clean up in this situation:

1. Find each instance of Word.

2. Check whether the instance is visible.
3. If it's not visible, stop it.

The most widely known way to get your hands on a running

application is with the FindWindow API call. FindWindow takes the
window title as a parameter and returns the window handle. Declaring

and using it looks like this example, where we'll grab a handle to the
Calculator applet.

DECLARE LONG FindWindow IN WIN32API ;
 STRING lpClassName, STRING lpWindowName
nHandle = FindWindow(NULL, "Calculator")

To use FindWindow in this way, you need to know the application's
title, that is, the contents of the title bar. However, Word (like the

other Office applications) makes that difficult because its title bar
changes based on what document you're editing.

As the declaration and call indicate, FindWindow offers another

approach. Instead of passing the window's title, you can pass the
application's class name. The class name identifies the application

rather than the window. For some reason, the class name for Word is
"OpusApp", so you can find a Word window like this:

nHandle = FindWindow("OpusApp", NULL)

However, this approach finds a single Word window, not all Word

windows, and there's no way to get from the window found to the next
Word window.

Fortunately, there's another way to tackle the problem. Rather than
looking for a particular window, we can go through the entire list of

windows, and check each to see if it's one we want. The secret is that
all the windows we're interested in are "children" of the Windows

desktop. (There are lots of other windows around, but applications are

always one level below the desktop.)

To cycle through all the windows that belong to the desktop, we first

need a handle to the Windows desktop. The GetDesktopWindow
function takes care of that.

DECLARE LONG GetDesktopWindow IN WIN32API
lnDesktopHWnd = GetDesktopWindow()

Once we have the desktop window, the GetWindow function can cycle
through all its children. Here's the declaration:

DECLARE LONG GetWindow IN WIN32API LONG hWnd, LONG wCmd

The first parameter is a reference window. The second parameter,

wCmd, tells which window handle to return in relation to the reference
window. Pass the constant GW_CHILD to get the first child. Pass

GW_NEXT to get the next child. (Of course, you need to declare these

constants to make them available.) This loop cycles through all the
children of the desktop window and displays their window handles.

#DEFINE GW_CHILD 5
#DEFINE GW_HWNDNEXT 2
lnHWnd = GetWindow(lnDesktopHWnd, GW_CHILD)

DO WHILE lnHWnd <> 0
 ? "Next child is ", lnHWnd
 lnHWnd = GetWindow(lnHWnd, GW_HWNDNEXT)
ENDDO

Now that we have a way to find every application-level window, we

need to figure out which ones belong to the application we're
interested in. Back to the class name. The GetClassName function

takes a window handle and finds the class name for that window. It
returns the length of the class name, while storing the name in its

second parameter, which must be passed by reference. As with many
other API functions, in order to get a string back, you have to create

the string variable first, initializing it to an empty string of the
maximum length and pass both the variable and the length.

DECLARE LONG GetClassName IN WIN32API ;
 LONG hWnd, STRING lpClassName, LONG nMaxCount

lcClass = SPACE(256)
lnLen = GetClassName(lnHWnd, @lcClass, LEN(lcClass))
lcClass = LEFT(lcClass, lnLen)

The next step is determining whether the Word window is visible. Not

surprisingly, that's the function of the IsWindowVisible API function.
Using this one is simple. You pass a window handle and it returns a

numeric value. A return value of 0 means the window is invisible;
otherwise, it's visible.

DECLARE LONG IsWindowVisible IN WIN32API LONG hWnd
lnIsVisible = IsWindowVisible(lnHWnd)

Finally, we need a way to close a window, once we've determined that

it's an invisible Word window. For that, we use the PostMessage API
function. Again, you pass the window handle. The wMsg parameter

contains the message to pass; the WM_CLOSE constant has the right
value. For our purposes, you can simply ignore the last two

parameters, which are used to pass additional information about the
message.

DECLARE LONG PostMessage IN WIN32API ;
 LONG hWnd, LONG wMsg, LONG wParam, LONG lParam

#DEFINE WM_CLOSE 0x10
PostMessage(lnHWnd, WM_CLOSE, 0, 0)

We can put all this together to write a KillApp function that seeks out
and destroys all abandoned Word instances. You'll find the working

function on this month's Professional Resource CD. It accepts one
parameter, the class name of the application to kill.

Clearly, knowing the class name for an application is the key to
invoking this function. You can use the GetClassName function to find

the class name for an application you're running. (Use FindWindow, if

necessary, to get the window handle.) Visual Studio comes with

Spy++. This tool lists all existing windows in a treeview and lets you
examine all available information about a window. In addition, the

articles at the following URL's list the class names for a number of
applications.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q288902

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q88167

http://www.biocom.arizona.edu/tbook/faq/faq_200.htm

You may also want to add a second parameter to KillApp to indicate

whether to shut down all instances of the specified application or only
those that are invisible.

–Tamar

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q288902
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q88167
http://www.biocom.arizona.edu/tbook/faq/faq_200.htm

