
February, 2003

Advisor Answers

Sharing menus across versions

VFP 8/7/6

Q: I am currently working in Visual FoxPro 7.0 but have to support
Visual FoxPro 6.0 applications. Both my 7.0 and 6.0 applications use

the same library (my own) and I have run across a problem I cannot
seem to solve.

In my library, I have three shortcut menus that work in textboxes,
editboxes and so on. These are popups for spell checking and this kind

of thing.

However, when I modify the menu in VFP 7, Visual FoxPro wants to

convert these menus to the 7.0 format. I thought about splitting these
menus out into two sets, one for 6.0 and one for 7.0, but if I bind

these using the VERSION() function in an IF statement or something –
won't FoxPro (7.0) still want to convert both types because it will see

the reference to both?

Is there any compiler directive or something I could use to maintain
the use of my library and still manage to use it in both 6.0 (for the

time being) and 7.0, and maybe keep two sets of these menus - and
be able to manage this?

–Terry Cunningham (via Advisor.COM)

A: As you note, the format used for menu files (.MNX) changed

between VFP 6 and VFP 7. Specifically, VFP 7 includes the ability to
specify icons for menu items and the menu format was modified to

contain this information.

The good news is that, if you don't open the menu (with MODIFY

MENU or through the Project Manager) in VFP 7 or VFP 8, the .MNX file
retains the VFP 6 format. That's true even if you build an .APP or .EXE

in VFP 7 or VFP 8.

However, I suspect you'd like to do all your new development and

modifications in VFP 7 without worrying about the menu format.

Fortunately, there's a solution.

The exact steps you need to take depend on whether you want to add

icons to the menus for VFP 7 use. I'll show what you need to do if
that's not a consideration, and then describe what else is necessary if

you do want that ability.

The key to solving your problem is to remember that an .MNX is just a

table with a different extension and thus, it can be manipulated
programmatically. Combine that capability with a project hook and you

should be able to maintain one copy of your menus for both versions.

A project hook is an object that's linked to a project and has methods

that fire based on various project events. The event we're interested in
here is BeforeBuild, which fires at the beginning of the build process.

We can put code there to look at each menu and, if we're in VFP 6,
make sure it's in VFP 6 format.

The first thing almost any project hook needs is an object reference to
the project to which it's related. Add a custom property to your

projecthook subclass called oProject. Then, put this code in the Init

method:

This.oProject = _VFP.ActiveProject

Put this code in BeforeBuild (after the required parameters):

LOCAL oFile

IF VERSION(5) <= 600
 * Only do this if we're running in VFP 6 or earlier
 * Replace any menus with copies in the right version.
 FOR EACH oFile IN This.oProject.Files
 IF oFile.Type = "M"
 This.FixMenu(oFile)
 ENDIF
 ENDFOR
ENDIF

Add a custom method FixMenu to the class and put this code in there:

* Change a menu to VFP 6 format, if necessary
LPARAMETERS oMenuFile

LOCAL aFieldList[1], nFieldCount, lFoundFields

SELECT 0
USE (oMenuFile.Name) ALIAS MenuFile EXCLUSIVE
nFieldCount = AFIELDS(aFieldList)
IF nFieldCount > 23
 * VFP 6 menus have 23 fields
 * Check for the specific fields

 lFoundFields = aFieldList[24, 1] = "SYSRES"
 IF nFieldCount = 25
 lFoundFields = lFoundFields AND ;
 aFieldList[25, 1] = "RESNAME"
 ELSE
 * Something's wrong
 lFoundFields = .F.
 ENDIF

 IF lFoundFields
 ALTER TABLE (oMenuFile.Name) DROP SysRes
 ALTER TABLE (oMenuFile.Name) DROP ResName
 ENDIF
ENDIF
USE IN MenuFile

RETURN lFoundFields

Save the project hook class, then open the project and use the Project
Info item on the context menu or the Project menu to attach the

project hook class to the project. A project hook isn't instantiated for a
project until the next time you open the project after attaching, so be

sure to close the project and re-open it before building.

From this point on, each time you build the project, the menu files are

checked and, if necessary, restored to VFP 6 form. This projecthook

class is included on this month's Professional Resource CD.

If you'd like to be able to use the new icon capabilities when you're in

VFP 7 or VFP 8, you'll need to change the FixMenu method a little bit
and add some more code. Rather than just removing the columns, the

solution in that case is to make a copy of the MNX and MNT files, then
remove the columns. Then, in AfterBuild, you can restore the original

versions. I'd be inclined to add an array property to the class to track
the list of menu files treated this way. Storing the original name and

the name (including path) of the copy for each makes it easy to
restore them in AfterBuild.

–Tamar

