
July 2017 FoxRockX Page 9

In my last article, I looked at how to create reports
with crosstab and pivot data. This time, I look at
how to send the results to Excel.
Crosstab and pivot data is challenging to report on
because it may have many columns and we often
won’t know when we write the code how many
columns we’re dealing with. Exporting such data to
Excel can be a great solution because it can handle
lots of columns, and the various export techniques
don’t generally require you to know how many
 columns you have ahead of time. In addition,
 sending data to Excel gives users the change to do
additional crunching on it as needed.

We can export the crosstabbed data as is or
we can send raw data and use Excel’s pivot table
capabilities to crosstab it there. We’ll look at both
options.

We’ll work with the example in Listing 1, which
collects sales by employee by month.

Listing 1. This code produces a cursor with one row for each
employee for each month in which the employee had any sales.
SELECT EmployeeID, YEAR(OrderDate) AS Year, ;
 MONTH(OrderDate) as Month, ;
 SUM(Quantity*UnitPrice) AS OrderTotal ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = ;
 OrderDetails.OrderID ;
 GROUP BY 1, 2, 3 ;
 INTO CURSOR csrMonthlyTotals

* Add employee name
SELECT PADR(ALLTRIM(FirstName) + (' ' + ;
 LastName), 30) AS cName, ;
 csrMonthlyTotals.* ;
 FROM csrMonthlyTotals ;
 JOIN Employees ;
 ON csrMonthlyTotals.EmployeeID = ;
 Employees.EmployeeID ;
 ORDER BY LastName, FirstName ;
 INTO CURSOR csrReport

Sending cross-tabbed data to
Excel
The simpler solution is to take the crosstab or pivot
results and just send them to Excel. Depending
how much control you want, there are a variety of
ways to do this.

Sending crosstabs to Excel
In many cases, users need the ability to do more with data once it’s been cross-
tabbed. There are a number of ways to get it there, including creating Excel
Pivot Tables.

Tamar E. Granor, Ph.D.

The code in Listing 2 gives us the crosstabbed
results, with one row per employee and one column
per month. (Make sure fastxtab.prg is in your path
or add a path in the code.) The combined code
from these two listings is included in this month’s
downloads as CrossTabSalesPersonMonthly.prg.

Listing 2. This code creates a crosstab from the results of the
query in Listing 1.
LOCAL oXTab AS FastXTab OF "fastxtab.prg"

oXTab = NEWOBJECT("fastxtab", "fastxtab.prg")
WITH oXTab AS FastXTab OF "fastxtab.prg"
 .cOutFile = "csrXtab"
 .cRowFIELD = "cName"
 .cColField = ;
 [PADL(OrdYear,4) + "-" + PADL(OrdMonth,2)]
 .cDATAFIELD = "OrderTotal"
 .lCursorOnly = .T.
 .lCLOSETABLE = .T.
 .RunXtab()
ENDWITH

The most basic way to send this data to Excel
is the COPY TO command. There are two output
options, Excel data or CSV (comma-separated
value). The only difference in the COPY TO
command is the keyword you place after TYPE. To
create an Excel file, use XL5; for a CSV, use CSV.

COPY TO actually supports two different Excel
types, XLS and XL5. Both are somewhat outdated.
XLS is the file format from Excel 2.0. Do not use it;
it has two important limitations. First, dates aren’t
handled property. Second, it’s limited to 16,384
rows. (Obviously, this is not an issue for our exam-
ple, but might be in other cases.) As this discussion
implies, COPY TO has no way to create the more
recent XLSX file; see the next section for options for
doing that.

TYPE XL5 handles dates properly, but is
limited to 32,767 rows. That’s one reason you may
prefer TYPE CSV, which doesn’t have that limit
and is treated by Excel as if it were a native type.

Listing 3 shows the code to export to TYPE XL5;
in this month’s downloads the code is included as
ExportToXL5SalesPersonMonthly.prg. Figure 1
shows partial results before doing any formatting
in Excel.

Page 10 FoxRockX July 2017

Listing 3.This code exports the crosstab results to Excel
directly.
LOCAL cXLSFile
cXLSFile = FORCEPATH(FORCEEXT(;
 "SalesPersonMonthly", "XLS"), SYS(2023))

COPY TO (m.cXLSFile) TYPE XL5

The code to export to CSV is nearly identical;
it’s included in this month’s downloads as
 ExportToCSVSalespersonMonthly.prg and shown
in Listing 4. When you open the file in Excel, before
doing any formatting, it looks almost identical to
Figure 1. (The only difference I see is in the font
used. On my Windows 7 computer, the XLS file
uses 10-point Arial, while the CSV uses 11-point
Calibri, my default for Excel.)

Listing 4. Exporting to a CSV file is another way to get data
into Excel.
LOCAL cCSVFile
cCSVFile = FORCEPATH(FORCEEXT(;
 "SalesPersonMonthly", "CSV"), SYS(2023))

COPY TO (m.cCSVFile) TYPE CSV

If you need to format the spreadsheet before
passing it along to users, you can use Automation
to open it in Excel and do the formatting.

Creating XLSX files
Given that the XLSX format first appeared in Office
2007, your users may want that rather than the older
XLS or CSV format. One easy way to create an XLSX
is to generate an XLS or CSV file with COPY TO, and
then use Automation to save it in a newer format. The
code in Listing 5 (included in this month’s downloads
as ExportToXLSXSalespersonMonthly.prg) does that,
with a few safeguards in case Excel or the workbook
can’t be opened.

Listing 5. This code exports data to Excel using COPY TO and
then opens the XLS file and saves it in the XLSX format.
LOCAL cXLSFile, cXLSXFile
LOCAL oXL, oWorkbook, lSuccess

cXLSFile = FORCEPATH(FORCEEXT(;
 "SalesPersonMonthly", "XLS"), SYS(2023))
cXLSXFile = FORCEEXT(m.cXLSFile, "XLSX")

COPY TO (m.cXLSFile) TYPE XL5

TRY
 oXL = CREATEOBJECT("Excel.Application")
 lSuccess = .T.
CATCH
 MESSAGEBOX("Unable to open Excel.")
 lSuccess = .F.
ENDTRY

IF m.lSuccess
 TRY
 oWorkbook = ;
 oXL.Workbooks.Open(m.cXLSFile)
 lSuccess = .T.
 CATCH
 MESSAGEBOX("Unable to open workbook " +;
 "in Excel for conversion to XLSX.")
 lSuccess = .F.
 oXL.Quit()
 ENDTRY
ENDIF

IF m.lSuccess
 TRY
 oWorkbook.SaveAs(m.cXLSXFile, 51)
 && 51 = xlOpenXMLWorkbook
 CATCH
 MESSAGEBOX("Unable to convert " + :
 "workbook to XLSX.")
 ENDTRY
 oXL.Quit()
ENDIF

As before, you still need to format the work-
book afterward; the result looks the same as Figure
1.

In addition, this approach requires Excel 2007
or later to be installed on the machine where the
code is running. The VFP world being what it is,
there are several open source projects that allow
you to create XLSX files without Excel. I’ll briefly
cover two of them here.

XLSX Workbook
XLSX Workbook comes from Greg Green, who has
created a number of utilities for VFP developers.
This one is a class that lets you not only export data
to Excel, but format it as well. Even better, it has
extensive documentation. You can download the
latest version from https://github.com/ggreen86/
XLXS-Workbook-Class.

Exporting a table or cursor takes just a
couple of lines of code, as in Listing 6. First, you
instantiate the VFPxWorkbookXLSX class; be sure
to either put the class library in your path, or to
add the path to the NewObject() call. Then, call
the SaveTableToWorkbookEx method, passing
the table name or alias to export and the name of
the file you want to create. The code is included as
ExportXLSXWorkbookSalespersonMonthly.prg in
this month’s downloads. Partial results are shown
in Figure 2.

Figure 1. When you export with COPY TO, the data is simply
dumped into an Excel file with no formatting.

July 2017 FoxRockX Page 11

Listing 6. Exporting a table or cursor to Excel with XLSX Work-
book is simple.
LOCAL cXLSFile, oToExcel, lReturn
cXLSXFile = FORCEPATH(FORCEEXT(;
 "SalesPersonMonthly", "XLSX"), SYS(2023))

oToExcel = NEWOBJECT("VFPxWorkbookXLSX", ;
 "VFPxWorkbookXLSX.vcx")
lReturn = oToExcel.SaveTableToWorkbookEx(;
 "csrXTab", m.cXLSXFile)

IF NOT m.lReturn
 MESSAGEBOX("Unable to create workbook")
ENDIF

The class has many additional methods, includ-
ing the ability to save a grid to a workbook, main-
taining its formatting.

DBF2XLSX
This tool comes from Vilhelm-Ion Praisach (whose
extensions to FastXtab I discussed in the May, 2016
issue). The download, which is linked in Praisach’s
blog at http://praisachion.blogspot.com/2017/04/
export-dbf-to-excel-2007.html, includes the basic
export, as well as a class to provide UI for export-
ing. He also provides VFP 6-compatible versions.
(In addition, elsewhere in his blog, Praisach offers
a tool for importing XLSX files and tools for export-
ing to other Office formats.)

Using DBF2XLSX is even easier than using
XLSX Workbook. Listing 7 shows the necessary
code. A single line of code does the export; Figure
3 shows partial results. The code is included as
ExportDBF2XLSXSalespersonMonthly.prg in this
month’s downloads.

Listing 7. With DBF2XLSX, one line of code exports a table or
cursor to a modern Excel workbook.
LOCAL cXLSFile, oToExcel, lReturn
cXLSXFile = FORCEPATH(FORCEEXT(;
 "SalesPersonMonthly", "XLSX"), SYS(2023))

DO CopyToXLSX WITH 'csrXTab', ;
 m.cXLSXFile, .T.

Only the first two parameters are required,
providing the table or cursor to be copied and
the name of the result file. The third parameter
indicates whether the first row of the result should
contain the column names. Additional parameters
let you indicate which columns to include, as well
as what to do with memo fields.

The downloads don’t include documentation
other than some test code, but a number of posts
on Praisach’s blog discuss how to use this routine
and the others. Several posts indicate that the class
ExportXLSX has the ability to export a grid, not just
a table or cursor.

Other options
There are several other projects floating around
the VFP world that have the capability of creating
XLSX files.

FoxyXLS was created by Cesar Chalom, the
creator of FoxCharts and FoxyPreviewer. Unlike
the tools above, it doesn’t provide a one-line way
to convert, but it doesn’t take too much code. Rick
Schummer wrote about it in detail in the March,
2014 issue.

Çetin Basoz’s VFP2Excel is a simple procedure
that copies VFP data to Excel using ADO. Unlike
the other tools described here, it expects Excel to
be present and running. One of its parameters is
a reference to the range in Excel where the data
should be placed.

Creating pivot tables
All of the previous solutions simply take the
generated crosstab and dump it into a spreadsheet.
But Excel has some very nice capabilities relating
to crosstabs and pivots. You can give users the
ability to slice and dice the data in different ways,
including filtering based on the values provided
and collapsing whole sections.

Figure 4 shows (part of) the result we’ll be
working toward in this section. The whole spread-
sheet is included in this month’s downloads as
 PivotedSalesPersonMonthly.xlsx.

Figure 2. XSLX Workbook can export directly from a table or
cursor to XSLX. By default, it does no formatting.

Figure 3. The output from CopyToXLSX needs some formatting.

Page 12 FoxRockX July 2017

Introducing pivot tables
Excel has included pivot tables for a long time;
the functionality was first introduced in Excel 5.0,
back in 1994. The Pivot Table wizard, introduced in
Excel 97, made it easy to create pivot tables.

As Figure 4 shows, pivot tables can let you use
multiple criteria for pivoting the data. Here, the
rows are based on salesperson, while the columns
are based on both month and year. When you use
multiple criteria, pivot tables let you collapse and
expand; Figure 5 shows the same worksheet with
the 1996 data collapsed to a single column.

Excel’s pivot tables also let you filter and sort,
based on either row or column values. Figure 6
shows the dropdown that appears when you click
the arrow on the Salesperson header.

Note that you can filter on either the label
or the value. That is, you could select only those
salespeople in a certain part of the alphabet (which
seems silly), or you could select only those with total
sales (in the Grand Total column at the very right
edge of the pivot table) in a certain range. Figure 7
shows the pivot table with all three years collapsed
and with a filter of total sales greater than or equal
to $100,000. Note the icon on the Salesperson header
that lets you know you’re seeing filtered data.

Figure 4. Excel’s pivot tables present crosstab data in a way that lets users explore it.

Figure 5. When you pivot on multiple criteria, Excel’s pivot
tables let you collapse and expand on the higher-level values.
Here, the 1996 data has been collapsed to a single column.

Figure 6. Excel’s pivot tables let you filter and sort,
based on row or column values. This window opens
when you click the dropdown arrow on the Salesperson
header.

July 2017 FoxRockX Page 13

bad code, when you’re first trying to automate a
task and have no idea what objects are involved,
recording a macro can get you started; that’s what
I did to figure out how to create a pivot table. In
fact, I’d hardly looked at Excel’s pivot tables before
working on this article, so I actually started out
using Excel’s Pivot Table Wizard to figure out how
to create them at all. (It wasn’t obvious to me where
to find that Wizard; it’s on the Insert tab.) Once I felt
comfortable, I recorded a macro using the Wizard,
and then adapted that code in VFP.

The first step in creating a pivot table is to send
the raw data to Excel. The first part of this article
showed multiple ways to do that. Since creating a
pivot table implies that Excel is available, I chose
to simply create a CSV file with COPY TO, as in
Listing 8.

Listing 8. The first step in creating a pivot table is sending the
raw data to Excel.
OPEN DATABASE HOME(2) + "Northwind\Northwind"

SELECT EmployeeID, ;
 YEAR(OrderDate) AS Year, ;
 MONTH(OrderDate) as Month, ;
 SUM(Quantity*UnitPrice) AS OrderTotal ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = ;
 OrderDetails.OrderID ;
 GROUP BY 1, 2, 3 ;
 INTO CURSOR csrMonthlyTotals

* Add employee name
SELECT PADR(ALLTRIM(FirstName) + ;
 (' ' + LastName), 30) AS cName, ;
 csrMonthlyTotals.* ;
 FROM csrMonthlyTotals ;
 JOIN Employees ;
 ON csrMonthlyTotals.EmployeeID = ;
 Employees.EmployeeID ;
 ORDER BY LastName, FirstName ;
 INTO CURSOR csrReport

LOCAL cCSVFile
cCSVFile = FORCEPATH(FORCEEXT(;
 "SalesPersonMonthly", "CSV"), SYS(2023))

COPY TO (m.cCSVFile) TYPE csv

The simplest way to create a pivot table is to
first create a pivotcache object. A pivotcache is an
object containing the data you want to put in the
pivot table. (Besides being really easy, creating
a pivotcache first lets you use the same data for
multiple pivot tables.) The pivotcache object has
a CreatePivotTable method that does most of the
heavy lifting. In Listing 9, the CSV file is opened in
Excel, and the pivotcache and pivottable objects are
created. Note the use of Excel’s UsedRange object to
refer to all rows and columns in the exported data

When there are multiple criteria, as with the
columns in this example, you can choose which
criterion you’re sorting or filtering on. Figure 8
shows the dropdown that lets you pick the field to
which the rest of the dialog applies.

Creating pivot tables programmatically
If you can do it interactively in Excel, you can
almost always do it programmatically. While
I’ve written (for example, http://tinyurl.com/
ybhfsdfc) that recording a macro can result in

Figure 7. You can filter a pivot table based on the computed
data.

Figure 8. When you use multiple criteria to specify rows
or columns, you can choose which to sort or filter on.

Page 14 FoxRockX July 2017

Of course, we don’t want to work with the
wizard; we want to do this programmatically. To
do that, add one or more data fields using the pivot
table’s AddDataField method. The method accepts
three parameters: the field to add, a caption for it,
and a function to apply to the field. Only the first
parameter is required.

The secret to providing the pivot field is the
pivot table’s PivotFields collection, which contains
all the fields put into the pivotcache; they’re named
by the column headers in the original data. In our
example, there are five: cname, employeeid, year,
month, and ordertotal. The only field there that we
want to treat as data is ordertotal, so that’s the one
we specify in the AddDataField method.

The caption parameter specifies the string
that will appear in the upper-left corner of the
pivot table. In our example, we want “Orders ($).”
Omitting this parameter uses the field name as the
caption.

The function parameter is based on the
xlConsolidationFunction enumeration; the most
common values are shown in Table 1. Other
available functions include variance and standard
deviation, as well as some variants on count. If you
omit this parameter, you get a sum.

Table 1. You can specify what aggregation function to use on a
data field.

Function Excel
constant

Value

Average xlAverage -4106
Count xlCount -4112
Maximum xlMax -4136
Minimum xlMin -4139
Sum xlSum -4157

Listing 10 shows the code to add ordertotal as a
data field to the pivot table.

Listing 10. It takes only one line of code to set up a data field
in the pivot table.
oPT.AddDataField(;
 oPT.PivotFields("ordertotal"), ;
 "Orders ($)", -4157) && xlSum

The other thing we need to do is specify which
fields are columns and which are rows. The easiest
way to do this is set the relevant properties for
each field individually. The two key properties are
Orientation and Position. Orientation determines
whether the field is used for rows (1 = xlRowField)
or for columns (2 = xlColumnField). Position
determines the priority of the row or column when

Listing 9. Creating the pivot table object is straightforward,
using a pivotcache.
LOCAL oExcel AS Excel.Application, ;
 oWorkbook as Excel.Workbook, ;
 oSheet AS Excel.Worksheet, ;
 oPC AS Excel.PivotCache, ;
 oPT AS Excel.PivotTable, ;
 oRange AS Excel.Range

oExcel = CREATEOBJECT("Excel.Application")
oWorkbook = oExcel.Workbooks.Open(m.cCSVFile)
oExcel.Visible = .T.

* Adapted from PivotTable macro
oRange = oExcel.ActiveSheet.UsedRange()
oSheet = oExcel.Sheets.Add()
oSheet.Name = "SalesPivot"
oPC = oExcel.ActiveWorkbook.PivotCaches.;
 Create(1, ; && xlDatabase
 m.oRange, 4)
 && 5=xlPivotTable15; 4=xlPivotTable14

oPT = oPC.CreatePivotTable(;
 "SalesPivot!R3C1", "PivotTable2", .T., 4)

The pivot table object created is empty. If you
look at the workbook at this point, the worksheet
exists, but there’s no data there. Instead you see a
prompt from Excel, as in Figure 9. If you click in
that area, the Pivot Table Wizard pane appears so
you can specify the layout of the pivot table.

Figure 9. After creating a pivot table, Excel prompts
you to populate it.

July 2017 FoxRockX Page 15

The complete code to create the pivot table
shown in Figure 4 is included in this month’s
downloads as PivotExcelSalespersonMonthly.prg.

You can do lots more with pivot tables, includ-
ing specifying multiple pivot fields, and including
a third dimension (pages). You’ll find documen-
tation for the PivotTable object at http://tinyurl.
com/y8dzgcft. Note that once we've set a caption
for a field, we need to use that caption to refer to it
in the collection rather than the field name. So, the
code refers to oPT.PivotFields("Orders ($)") rather
than oPT.PivotFields("ordertotal").

Next up: Graphing
For many situations, sending crosstab data to Excel
will give users exactly what they need. But others
want a more visual approach. In my next article, I’ll
explore ways of getting crosstab data into graphs.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

multiple rows or columns are specified. Listing 11
shows the settings for our example, making cname
a row field, and year and month column fields,
with year coming first.

Listing 11. Set the orientation and position properties of the
items in the PivotFields collection to specify the rows and col-
umns you want to show in the pivot table.
With oPT.PivotFields("cname")
 .Orientation = 1 && xlRowField
 .Position = 1
EndWith
With oPT.PivotFields("year")
 .Orientation = 2 && xlColumnField
 .Position = 1
ENDWITH
With oPT.PivotFields("month")
 .Orientation = 2 && xlColumnField
 .Position = 2
EndWith

At this point, you have a pivot table showing
the relevant data. The final steps are cosmetic:
setting the row and column descriptions and
formatting the data properly.

The CompactLayoutRowHeader and
CompactLayoutColumnHeader properties of the
pivot table specify the headers for the rows and
columns, respectively. These are also the items that
contain the dropdowns for sorting and filtering.

Formatting all the data cells in a pivot table is
surprisingly simple; just set the NumberFormat
property of the relevant member of the PivotFields
collection. The code in Listing 12 sets the headers
and formats the data cells.

Listing 12. Formatting a pivot table takes just a few lines of
code.
oPT.CompactLayoutRowHeader = "Salesperson"
oPT.CompactLayoutColumnHeader = "Months/Years"
oPT.PivotFields("Orders ($)").NumberFormat = ;
 "$#,#0"

DOWNLOAD

Subscribers can download FR201707code.zip in the SourceCode sub directory of the document
portal. It contains the following files:

doughennig201707_code.zip
Source code for the article “Handling Multiple Monitors” from Doug Hennig

pradipacharya201707_code.zip
Source code for the article “Modal form, All menus Active – How so ? ” from Pradip Acharya

tamargranor201707_code.zip
Source code for the article “Sending crosstabs to Excel” from Tamar E. Granor, Ph.D.

