
June, 1996

Putting Combos and Lists to Work

These two controls are very powerful, but getting what you want from them isn't
always straightforward.

By Tamar E. Granor, Editor

With all the hoopla about the new grid and pageframe controls in Visual FoxPro, there

hasn't been much talk about two of the coolest controls around, combo boxes and list
boxes. The VFP versions of these old standards are significantly easier to work with and

more capable than their FoxPro 2.x counterparts. There are still some complications and

a few things that are harder than they should be, though.

This article covers the basics of working with lists and combos and looks at some of the

most common issues that arise.

What are lists and combos?

Both lists and combos are tools for letting a user choose an item from a known list. They
differ primarily in appearance, though combos also allow entry of an item not on the list.

Lists are pretty simple. They're known formally as list boxes and are also called

scrollable lists. They're common in the Windows environment, appearing in common
dialogs like File-Open (for choosing a file) and many other places.

Combos, officially known as combo boxes, come in two flavors: drop-down combo and
drop-down list. The key word there is "drop-down" because both types show a single

item at a time and open up (or drop down) to show the complete list of choices. Like
lists, you'll see combos in lots of Windows dialogs (including File-Open, where a drop-

down list shows drives).

The drop-down combo style allows the user to enter a new item while the drop-down list

only accepts choices from the listed items.

Although lists and combos are visually different, much of what makes them tick is the

same. The discussion below applies equally to lists and combos unless otherwise noted.
Throughout this article, the term "list" is used to refer to the actual items displayed in

the list or combo.

List Fundamentals

Lists and combos don't do you much good unless they're populated with something.

Visual FoxPro provides no fewer than 10 ways to fill them. About half are pretty useful.

The property that determines the method of filling the list is RowSourceType, which

accepts a numeric value from 0 to 9. The value in RowSourceType determines the
interpretation of RowSource, which, in most cases, contains the list data or a pointer to

it. Table 1 shows the choices for RowSourceType and the interpretation of RowSource in
each case.

Table 1 - Combo and List RowSourceTypes. There are 10 different ways to populate the list.

RowSourceType RowSource

0 - None Left Empty. Items are added individually with

code.

1 - Value Contains a comma-delimited list of items to
appear in the list.

2 - Alias Contains the alias of an open table, cursor or
view that provides the data for the list.

3 - SQL Statement Contains a SQL-SELECT. The cursor created by

the query is used to populate the list.

4 - Query Contains the name of a QPR file. The results of
the query fill the list.

5 - Array Contains the name of an array whose data fills
the list.

6 - Fields Contains the name of one or more fields of a

table, cursor or view which populate the list.
Only the first field should include the alias.

7 - Files Contains a file skeleton. The list contains the

names of all matching files.

8 - Structure Contains the alias of a table, cursor or view. The

names of its fields fill the list.

9 - Popup Contains the name of a popup created with
DEFINE POPUP. The list contains the bars of the

popup.

The most useful RowSourceTypes are 0 - None, 2 - Alias, 3 - SQL Statement, 5 - Array

and 6 - Fields. Alias is most useful if the alias refers to a cursor or view, so fields are in
an appropriate order.

When using RowSourceType = 3, be sure to send the query INTO CURSOR something. If
the query has no INTO clause, the default BROWSE appears as the form is being

instantiated. (The same thing applies to RowSourceType = 4 - Query, too.) Note also
that the cursor you create is not automatically closed when the form closes, even if

AutoCloseTables is .T. You'll want to close it explicitly in the Destroy method for either
the form or the control. Figure 1 shows a form with a combo based on a SELECT. You'll

find it on the disk as CounComb.SCX. (All the forms in this article use tables from Visual
FoxPro's TasTrade sample database.)

Figure 1. SELECT-based Combo. The combo box of countries has a RowSource which is a SQL-SELECT.

For array-based lists and combos, make the array a property of either the form or the

control itself. (You can only make it a property of the control by sub-classing the base
list or combo and adding the property in the Class Designer.) Using a property is a

better choice than using an array which is a regular memory variable. You'd have to
declare the array public in the form to make it available to all the form's methods. (In

general, if you find yourself declaring variables public in a form, try making them
properties of the form instead.)

Set RowSource to THISFORM.<the array> or THIS.<the array>. For example, the

Companion Resource Disk includes a class called arrayCbo, which has a custom property
aContents. The RowSource is set to "THIS.aContents".

Of Indexes and ItemIds

Regardless of the source of the data, lists and combos contain not just one, but two,

internal properties for looking at what's actually in the list without knowing anything
about the source. Two collections (a collection is like an array), List and ListItem, let you

check on the items in the list.

In fact, many properties and methods related to lists and combos come in pairs. The

reason is that there are two ways of looking the items in the list. The first, perhaps more

intuitive way, is based on their display order. Since lists and combos can be sorted, and,
with some RowSourceTypes, items can be added and removed dynamically, the actual

display order can vary. The List collection property contains the items in display order.
List[1] is the first item shown, List[2] is the second item displayed, and so forth.

But there's another way to look at the items in a list. Each one is assigned its own
unique id number (called the "ItemId") when it's added to the list. The id number

assigned to a particular entry never changes (though the text of the entry may). The
ListItem collection property contains the items in id order.

The difference between the two orders is like the difference between looking at the
records in a table in indexed order and in natural order. The List or Index approach

corresponds to an indexed table - it shows the items sorted. The ListItem or ItemId
approach corresponds to natural (or RECNO()) order. (The analogy falls apart as soon as

you allow the table to be packed - there's no such operation for lists.)

The various properties and methods related to lists and combos frequently are paired,

having an Index version and an ItemId version. For example, ListIndex tells you which

item in Index order is currently highlighted while ListItemId tells you which item in

ItemId order is highlighted. They point to the same item, but when Index order differs

from ItemId order, they contain different values. Use ListIndex to get the selected value
in the List collection; use ListItemId to do the same for the ListItem collection.

Most of the time, the Index and ItemId versions of a property or method behave the
same way (though a few are broken in the initial release of 3.0). However, AddItem and

AddListItem are designed to be slightly and subtly different from each other.

The two Add methods let you add items to lists and combos whose RowSourceType is 0-

None or 1-Value. The important difference between them is that AddItem always adds a
new item to the list while AddListItem can either add a new item or change the value of

an existing item. This issue is most likely to arise when dealing with multi-column lists,
discussed below.

Storing the Results

Usually, you want to do something with the user's choice from a list or combo. (Not
always - sometimes a list may be simply informational.) The list or combo's Value

property tells you which item was chosen. ControlSource for the list or combo lets you
save the choice directly to a field or variable. However, there's a complication.

As in FoxPro 2.x, the Value of a list or combo can be either character or numeric. If it's
character, it behaves as you'd expect - Value contains the text of the chosen item. When

Value is numeric, it contains the Index of the chosen item, that is, the position of the
item in the list.

In fact, a numeric Value contains the item's Index even if the data is the list is itself
numeric! Here's what's going on. If you use non-character data as the RowSource for a

list, FoxPro internally converts it to character before putting it in the list. (You can check

this out by looking at List[1] in the Debug window - note that the value is surrounded by
quotes.) By the time the user makes a choice, as far as FoxPro's concerned, you're

looking at character data. The same thing is true for other data types, too - put dates in
and they turn into characters, too.

By definition, then, a numeric Value indicates you're interested in position, so FoxPro
stores the item's Index.

If you assign a ControlSource to a list or combo, it has the same behavior. If it's
character, the chosen item's content is stored to the ControlSource; if ControlSource

points to a numeric field or variable, the item's Index is saved. (See below for a work-
around.)

Storing a New Value

In drop-down combos, users have the option of typing in a value not on the list. The
value entered is stored in the DisplayValue property (and not in Value). In order to save

the entry, you need to grab DisplayValue in the combo's Valid event and store it
somewhere. You can determine whether a user has typed in a new value by comparing

DisplayValue to Value, as follows:

IF NOT (THIS.DisplayValue == THIS.Value)

 * do something with DisplayValue
ENDIF

Saving Non-Character Data

What if you really need to handle numeric or date data in a list or combo and return the
actual data? Here's an approach that does the trick. We create a subclass that does what

we want (since we want to write and debug this code only once).

The conversion is done in the list or combo's InteractiveChange. Add a custom property
called cControlSource which holds, as a character string, the name of the field or

variable which is to receive the data from the list. This is really just ControlSource in
sheep's clothing.

In the list (or combo) class' InteractiveChange method, put the following code:

* Convert character data to appropriate type and store it
* in the field or variable named in cControlSource.
* If cControlSource names a field, it must include
* the alias and a "." to distinguish it from a variable.

LOCAL cValueExpr

DO CASE
CASE TYPE(THIS.cControlSource)$"C,M,U"
 cValueExpr = "THIS.Value"
CASE TYPE(THIS.cControlSource)$"N,B,Y,I"
 cValueExpr = "VAL(THIS.Value)"
CASE TYPE(THIS.cControlSource)="D"
 cValueExpr = "CTOD(THIS.Value)"
CASE TYPE(THIS.cControlSource)="T"
 cValueExpr = "CTOT(THIS.Value)"
ENDCASE

IF "."$THIS.cControlSource
 REPLACE (THIS.cControlSource) WITH &cValueExpr
ELSE
 STORE &cValueExpr TO (THIS.cControlSource)
ENDIF

As the comments indicate, there's one restriction on the use of the new class. If

cControlSource points to a field, it needs to include the alias of the table.
InteractiveChange uses the "." that separates the alias from the field name to determine

that it's dealing with a field rather than a variable.

The version above works just fine for lists and for drop-down listboxes. For drop-down
combos, there's an added complication - the user might type a new value in rather than

choose from the list. As noted above, the data typed in doesn't affect the combo's Value
property. Instead, it's stored in DisplayValue. So, we have to force the issue. Add the

custom method ForceValue to the combo class with this code:

IF NOT (THIS.Value == THIS.DisplayValue)
 THIS.Value = THIS.DisplayValue
 THIS.InteractiveChange()
ENDIF

We want to wait for the user to finish entering the new value (rather than acting with

each keystroke). There are two ways the user can complete the typed entry - leave the
combo or drop it open. To catch the entry as soon as the user is done typing, call

ForceEvent from both the combo's Valid and DropDown events, like this:

THIS.ForceEvent()

The class library ListComb.VCX on this month's Companion Resource Disk contains the
classes AnyTypeCombo and AnyTypeList that use this approach to bind any type of

value.

Repopulating a List or Combo

There are times when the data a list or combo is based on changes while the form is

running. For example, another user may add a record to the table that list data is based
on. At other times, you need to change which data the list is based on. For instance, a

list might contain all the suppliers in a particular country and the user chooses the
country from a combo. When the user makes a new choice of country, we need to refill

the list of suppliers.

In both situations, we use the list or combo's Requery method to update it. Requery tells

FoxPro to go back to the original RowSource and repopulate the list with whatever data
is now available.

For example, if your RowSource is an array which you fill with a query (as it well might
be in the suppliers example above), after you run the query, use the list's Requery

method to get the current array contents into the list.

Figure 2 shows a form with a combo of countries and a list of suppliers in that country

(based on TasTrade data). Both the combo and the list have RowSourceType set to

array. Requery is used for both the combo and the list. (The form is found as Repop.SCX
on the disk.)

Figure 2. Repopulating a list or combo. The Requery method lets you refill a list or combo when data has
changed.

The combo is populated by a query in its own Init that fills the array with a list of the

countries. Following the query, we Requery the combo to let it recognize the additions to
the array:

SELECT DISTINCT Country FROM Supplier ;
 INTO ARRAY THISFORM.aCountries
THIS.Requery()

The list uses a similar technique, but takes advantage of a neat trick. The query that fills
the list's array needs to be run initially and again whenever the user makes a choice

from the combo. So, we put the query itself in the list's Requery method. Then, the list's
Init and the combo's InteractiveChange method both call the list's Requery method.

Since custom code in a method is executed before the native behavior (in this case,
refilling the list), the query runs, then the new data is placed in the list.

Usually, you won't need to put any code in the Requery method. Just calling it is often
sufficient to let FoxPro refill the list. Also, don't confuse the Requery method of lists and

combos with the REQUERY() function used to re-execute views. They do serve a similar

purpose but, in fact, there are times when a call to REQUERY() for a view is followed
with a call to a control's Requery method.

Multiple Columns? No Problem.

In FoxPro 2.x, creating a multi-column list box was a pain. You had to create an array or

cursor where all the information for each item was concatenated into a single string and
use a vertical bar character (usually CHR(179)) between the individual pieces of

information. In Windows or a Mac, you had to use a non-proportional font to get the
bars to line up properly. The result was ugly.

In Visual FoxPro, multi-column lists (and combos) are as simple as setting two

properties. ColumnCount tells FoxPro how many columns from the RowSource are to
appear in the data. ColumnWidths solves the proportional font problem. Best of all, the

List and Combo Builders will set both properties (along with a bunch of others) if you let
them.

Figure 3 shows a form containing a two-column list based on the Tastrade Products
table. The list has RowSourceType set to 6-Fields and RowSource set to

"Products.ProductName,UnitPrice". ColumnWidths is set to "210,100" to provide enough
room for each field. (This form is on the Companion Disk as MultList.SCX.)

Figure 3. Two-column list. Creating a multi-column list is simple. Just set ColumnCount and
ColumnWidths.

Note that ColumnWidths expects a character value containing a comma-delimited list of

numbers. In the Property Sheet, you can omit the quotes (as you generally can with
character strings there). But when you set ColumnWidths in code, you need to

remember that it's a character property.

Filling a Multi-Column List

It's when populating a multi-column list or combo (with RowSourceType = 0-None) that
many people decide that the AddItem method is broken. In fact, this is the situation in

which the big difference between AddItem and AddListItem is really apparent.

You can't use AddItem to fill all the columns of a multi-column list. That's because, as
noted above, AddItem always adds a whole new item.

There are two ways to populate all the columns. One uses AddListItem. The other takes
a more direct approach and addresses the list directly. The key to both methods is the

NewItemId property, which always contains the ItemId of the most recently added item.

In either case, AddItem is used for the first column. In the first approach, AddListItem is

used for the remaining columns. Figure 4 shows a form (PopMult.SCX) containing a list
of TasTrade's Employee table. The following code in the list's Init fills it:

SELECT Employee
SCAN
 THIS.AddItem(First_Name)
 THIS.AddListItem(Last_Name,THIS.NewItemId,2)
 THIS.AddListItem(Title,THIS.NewItemId,3)
ENDSCAN

Figure 4 Populating a multi-column list. There are two ways to fill all the columns. AddItem can't do the
job all by itself.

The alternative code also uses NewItemId, but addresses the ListItem property directly.

SELECT Employee
SCAN
 THIS.AddItem(First_Name)
 THIS.ListItem(THIS.NewItemId,2) = Last_Name
 THIS.ListItem(THIS.NewItemId,3) = Title
ENDSCAN

You can use whichever version feels more comfortable to you. (A third approach is to

assign the ItemIds yourself with a counter variable. In that case you can use
AddListItem for all the columns.)

Which Column Shall We Save?

Once you have multiple columns in a list, which column's data shows up in the Value

and ControlSource? By default, it's the first column. However, you can change it. The
BoundColumn property tells Visual FoxPro to put the value from the specified column in

Value or ControlSource (assuming they're character, of course). So, it's easy to display

five columns and store the value of the third.

Figure 5 shows a form (BindCol.SCX) with a four-column list based on the TasTrade

Products table. (The fields shown are ProductId, SupplierId, CategoryId and
ProductName.) BoundColumn is set to 4, so that the product name is stored (in this

case, to a variable named cProductName specified as the ControlSource for the list).

Figure 5. Binding any column. You can specify any column of a multi-column list or combo to be bound to
the Value and ControlSource.

This example shows one weakness of the Alias RowSourceType. You rarely want to see

columns in the order they appear in the table. There are two solutions to this problem.
First, you can use ColumnWidths to make some columns disappear. Just set the width

for that column to 0.

A better solution is to use the Fields RowSourceType instead. Then, you can indicate

which fields you want and in what order. Normally, you won't show code fields, but only

display fields that are meaningful to a user.

When you want to store a code field, but not display it, you can combine the two

techniques. Include the code field as a column, but set that column's width to 0. Set
BoundColumn to the invisible code column. Figure 6 shows another form

(HideCode.SCX) based on the TasTrade Products table. This one has a list showing only
the product name and unit price, but the product code is bound to a variable

cProductCode. The text box shows the current value of cProductCode, just so you can
verify that it's working. The following properties have been set in the Property Sheet for

the list (along with the various size and position properties):

BoundColumn = 3
ColumnCount = 3
ColumnWidths = 210,110,0
ControlSource = cProductCode
RowSource = products.product_name,unit_price,product_id
RowSourceType = 6

Figure 6. Hiding a column. You can even bind a hidden column (whose width is 0) to the Value or
ControlSource.

What's a DisplayValue?

For combos, the multi-column picture is a little more complex. When a combo is closed,
only a single value shows. It's always the first column of the currently selected item. The

property DisplayValue contains the text that shows (unless you set DisplayValue to a
number, in which case it behaves like Value and holds the Index of the currently

selected item).

Because DisplayValue always shows the first column, for combos, the order of the

columns in your data matters even more than with lists. You'll rarely use the Alias
RowSourceType with combos, unless the alias is for a view. Fields, Query or Array give

you more control over what comes first.

True Combo Boxes

Visual FoxPro's combo boxes are a little different from the standard Windows combos.

Throughout Windows, when the user types a value into a combo box, that value is
immediately added to the choices in that combo. FoxPro allows the user to type a value

without it being added to the list. In fact, that's the default behavior. To get the
standard Windows behavior requires a little code.

The exact details of adding the user's input vary depending on the RowSourceType for
the combo. The outline is the same in each case, though. In the combo's Valid method,

you need code like this:

IF NOT (THIS.DisplayValue == THIS.Value)
 * The user has entered a new item.
 * Do something to add the item to the list.
 * For RowSourceType = 0, you'd:
 THIS.AddItem(THIS.DisplayValue)

 * Now make Value point at the item, too.
 * Again, this version works for RowSourceType = 0

 THIS.Value = ;
 THIS.ListItem[THIS.NewItemId,THIS.BoundColumn]
ENDIF

If your combo is based on an array, add a row to the array and put the user's input in it.
If you're using one of the table-based RowSourceTypes, you can add a record to the

table. Don't forget to Requery the list or combo after you update the RowSource.

You might be inclined to do the updating in the combo's InteractiveChange event, but

that one fires for each character the user types. Valid waits until the user finishes typing
and moves on. The Companion Resource Disk contains a form (AddCoun.SCX) that uses

a simplified version of the code above to let the user add a country to a combo.

Jumping Ahead with the Keyboard

Both lists and combo's have an IncrementalSearch property that determines what

happens when you start typing characters. For combos, IncrementalSearch applies only
when you have a drop-down list or when a drop-down combo is open.

When IncrementalSearch is .T., the characters the user types are taken in sequence to
narrow the search. So, if a user types "f", then "o", then "x", the highlight will be on the

first item beginning "fox". When IncrementalSearch is .F., each character is taken
independently. In that case, the same input sequence lands on the first item beginning

with "x".

The complicating factor here is that the speed of typing for incremental search is

controlled by the system variable _DBLCLICK (which also controls how far apart two

clicks can be to constitute a double click). If there's a delay of more than _DBLCLICK
between characters, FoxPro assumes you're starting over; otherwise, the new character

is added to the current string. The default for _DBLCLICK is .5 for half a second. If
you're not seeing incremental search, try typing faster or increasing _DBLCLICK - the

maximum is 5.5 seconds.

Summing up

We've covered a lot of ground here, but believe it or not, this just scrapes the surface.

We haven't talked about multi-select or mover lists, or the TopIndex and TopItemId
properties, or associating a bitmap with every item in a list. But the information and

examples here should get you started experimenting with lists and combos. I think you'll
be amazed just how versatile they are.

