
May 2012
Number 26

 1 Know How…
 Put Event Binding to Work, Part 2
 Tamar E. Granor, PhD

 7 Deep Dive
Creating ActiveX Controls for VFP
using .Net, Part 1

 Doug Hennig

 12 SQLite
 SQLite Connection:
 Error Handling and Verifi cation
 Whil Hentzen

 19 VFPX
 FoxBarcode
 Rick Schummer

Put Event
Binding to
Work, Part 2
Use BindEvent() to make your applica-
tions easier to use.

Tamar E. Granor, Ph.D.

In my last article, I gave an overview of the BindEvent()
function and showed some of the ways I use it to
improve my applications. In this article, we'll see some
additional examples, including one that binds to a
Windows event.
Let's start with a quick review. BindEvent(), which
was added in VFP 8, lets you specify a method
that should run whenever a particular event fi res.
The syntax is shown in Listing 1. You can read it
as saying "Whenever oEventSource.cMethod fi res,
run oEventHandler.cDelegateMethod." The nFlags
parameter determines which method runs fi rst,
among other things. By default, it's the delegate
method.

L isting 1. The BindEvent() function lets you bind one method
to another.
BINDEVENT(oEventSource, cMethod, ;
 oEventHandler, cDelegateMethod, ;
 nFlags)

As in the previous article, the examples here
(with one exception) are drawn from a small ap-
plication (originally written to demonstrate user
interface practices) that manages a lending library.
The Library application is included in this month's
downloads.

Resizing toolbars
The addition of anchors in VFP 9 made it much easier
to properly resize controls when a form is resized.
But there are situations where anchoring doesn't do
the trick. In one application, I use controls inside
a toolbar to provide dockable forms inside the
application's main form (which is a top-level form).
Toolbars don't have an Anchor property; their size
is controlled by the size of their contents. When the
user resizes the application, I want to ensure that
the toolbar resizes; in order to do so, I have to resize
the objects in the toolbar. BindEvent() makes this
possible. However, if not done carefully, it can also
crash the application.

Page 2 FoxRockX May 2012

I first built this functionality to provide a status
bar for a top-level form that is the main form of the
application. I put the ActiveX StatusBar control
inside a toolbar. I bound the form's Resize method to
a custom method of the toolbar, called ResizeStatus.

What makes this operation difficult is that the
form's Resize method fires repeatedly as long as
you're resizing the form, rather than once when
you're finished. Resetting the status bar's size each
time the form's Resize method fires causes the
toolbar to resize itself repeatedly, which affects the
size of the form, which then calls the ResizeStatus
method, and so on and so forth. That sequence
eventually crashes VFP 9.

So I needed a way to control the resizing and
do it only once, each time the form is resized. I
subclassed the OLEControl class and added the
status bar control to it. That class, sbrMSStatus, has
a custom ResizeStatus method that contains the
code in Listing 2.

Listing 2. The status bar control's custom ResizeStatus meth-
od sets its width to a specified value.
LPARAMETERS nNewWidth

IF VARTYPE(m.nNewWidth) = "N"
 This.Width = m.nNewWidth
ELSE
 This.Width = ThisForm.Width
ENDIF

The toolbar class contains an instance of
sbrMSStatus, and has two custom properties. oForm
contains an object reference to the containing form,
while lResizingNow is a flag to indicate whether
we're in the middle of resizing. The toolbar has a
custom ResizeStatus method, containing the code
in Listing 3.

Listing 3. The toolbar's ResizeStatus method ensures that we
resize the status bar just once.
LOCAL aFired[1]
IF NOT This.lResizingNow
 This.lResizingNow = .T.
 * Need width of calling form to pass in
 AEVENTS(aFired, 0)
 This.oStatusBar.ResizeStatus(;
 aFired[1].Width)
 This.lResizingNow = .F.
ENDIF

The toolbar's Init method, shown in Listing 4,
populates the oForm property, and the BeforeDock
method, shown in Listing 5, ensures that the
statusbar fills the full width of the form when you
dock it. (The code should probably make sure
that you're only docking it top or bottom before
adjusting the width.)

Listing 4. The toolbar holds a pointer to the containing form,
stored in the Init method.
DODEFAULT()

This.oForm = _VFP.ActiveForm

Listing 5. The toolbar's BeforeDock method makes the status-
bar's width match the form's.
LPARAMETERS nLocation

* Make sure status bar fills form width
This.oStatusBar.Width = This.oForm.Width

The form does its portion of the work in the
Activate method. If the toolbar doesn't already ex-
ist, it's instantiated and the form's Resize method is
bound to the toolbar's ResizeStatus method. If the
toolbar isn't already docked at the bottom, we then
dock it. Listing 6 shows the Activate code.

Listing 6. The form's Activate method sets up the status bar
toolbar the first it runs.
IF ISNULL(This.oStatusBar)
 This.oStatusBar = ;
 NEWOBJECT("tbrStatusBar", "ebControls")
 BINDEVENT(This, "Resize", ;
 This.oStatusBar, "ResizeStatus", 1)
 This.oStatusBar.Show()
ENDIF

IF This.oStatusBar.DockPosition <> 3
 This.oStatusBar.Dock(3)
ENDIF

Note that, even with this approach, this tool-
bar is not compatible with the Library application's
main form where buttons in toolbars may take on
different sizes. That scenario crashes VFP.

This is the first example I've shown where
the delegate method runs after the source object's
method. We need to do things in that order so that
the form's Width will have changed by the time
we want to pass it to the status bar's ResizeStatus
method.

There's an example of a form with a status bar
toolbar in the downloads for this article, but it's not
used in the Library application because that appli-
cation docks and undocks other toolbars. To try it,
run ebMain.PRG.

Monitoring user activity
In some applications, we want to pay attention to
whether the user is doing anything. We might be
running a background process that should stop
when the user wants to do something else, or we
might want to log the user out after a period of in-
activity. In either case, we need to know any time
the user moves the mouse or types. BindEvent()
gives us a way to track user activity.

Tracking user activity is an application-level task,
so the application class, cusApp, needs several custom
properties. The first two manage activity tracking:
lTrackUserActivity, which indicates whether we're
tracking user activity; and oActivityTimer, a reference
to a timer object used for tracking. Two additional
properties let us indicate what timer to use for activity
tracking: cTimerClass and cTimerClassLib point to
the timer class to use.

May 2012 FoxRockX Page 3

The application class's Init method sets up the
timer, if the lTrackUserActivity property is true, as
shown in Listing 7.

Listing 7. The application class's Init method sets up a timer to
track user activity.
IF This.lTrackUserActivity
 This.SetupActivityTimer()
ENDIF

The SetupActivityTimer method, shown in
Listing 8, simply instantiates the timer and stores
a reference in the oActivityTimer property. TRY-
CATCH is used in case there's a problem.

Listing 8. Setting up the activity timer is as easy as instantiat-
ing the right object.
LOCAL lSuccess

TRY
 This.oActivityTimer = ;
 NEWOBJECT(This.cTimerClass, ;
 This.cTimerClassLib)
 lSuccess = .T.
CATCH
 lSuccess = .F.
ENDTRY

RETURN m.lSuccess

The base form class (frmBase) has a custom
property, lBindUserActions, and a custom method,
BindUserActions. In the form's Init method, we
check the property and if it's true, call the method,
as shown in Listing 9.

Listing 9. The lBindUserActions property determines whether
to track user activity in the form.
IF This.lBindUserActions
 This.BindUserAction()
ENDIF

You might wonder why we need the
lBindUserActions property at the form-level when
we already track this at the application-level. There
may be situations where a particular form should
be excluded from activity tracking, or conversely,
where only actions on certain forms should be
considered user activity.

The form's BindUserActions method, shown in
Listing 10, calls a method of the application object.
A little extra code ensures that we can run forms
stand-alone for testing. Note that we pass an object
reference to the calling form to the application's
BindUserActions method.

Listing 10. The BindUserActions method of the "base" form
class asks the application's timer to watch this form.
* If we have an application-level object
* watching for user activity, bind things
* in this form to it.

IF TYPE("goApp.oActivityTimer") = "O"
 goApp.BindUserActions(THIS)
ENDIF

The application's BindUserActions method
confirms that we're tracking and asks the timer to
do the actual binding; it's shown in Listing 11. It
passes along the reference to the form.

Listing 11. The application's BindUserActions method del-
egates the actual task of binding to the activity timer.
LPARAMETERS oObject
* Bind user actions in the specified object to
* the activity timer.

IF This.lTrackUserActivity
 * Only do this if we're tracking
 IF ISNULL(This.oActivityTimer)
 * In case we haven't already set it up,
 * do so now
 This.SetupActivityTimer()
 ENDIF

This.oActivityTimer.BindUserActionInObject(;
 m.oObject)
ENDIF

RETURN

All the real work happens in the timer object;
tmrUserActivity is derived from the base timer
class (tmrBase) and has one custom property,
lUserActed, which is .T. when there has been
user activity within the specified time frame
and .F. when there hasn't. The timer has two
custom methods, BindUserActionInObject and
UserActivity. BindUserActionInObject, shown in
Listing 12 and called from the application object's
BindUserActions method, binds the KeyPress
and MouseMove events of every control in the
specified object to the UserActivity method, and
drills down recursively to ensure that no matter
where the user types or moves the mouse, we
catch it.

Listing 12. The activity timer's BindUserActionInObject method
binds the KeyPress and MouseMove events of the specified
object and every control it contains to the timer's UserActivity
method.
LPARAMETERS oObject

IF PEMSTATUS(oObject, "KeyPress", 5)
 BINDEVENT(oObject, "KeyPress", ;
 This, "UserActivity")
ENDIF

IF PEMSTATUS(oObject, "MouseMove", 5)
 BINDEVENT(oObject, "MouseMove", ;
 This, "UserActivity")
ENDIF

IF PEMSTATUS(oObject, "Objects", 5)
 FOR EACH oChild IN oObject.Objects
 This.BindUserActionInObject(m.oChild)
 ENDFOR
ENDIF

RETURN

Thus, any user action on the form fires the
UserActivity method of the timer.

Page 4 FoxRockX May 2012

The tmrUserActivity class simply manages
the lUserActed flag; it needs to be enhanced or
subclassed to actually do something based on user
activity or inactivity. Here, the UserActivity method
sets the flag and resets the timer, so that it starts
watching for inactivity again. The method is shown
in Listing 13.

Listing 13. The UserActivity method fires every time the user
types or moves the mouse.
LPARAMETERS uParm1, uParm2, uParm3, uParm4
* Parameters for bound events

This.lUserActed = .T.
* So start counting again.
This.Reset()

RETURN

The parameters to UserActivity are worth men-
tioning. When a method is a delegate for an event,
it must accept the same parameters as the bound
event method. Since MouseMove accepts four pa-
rameters, we need four parameters, though we're
not doing anything with them. (KeyPress accepts
two parameters, but accepting four here won't
cause any problems.)

The timer's Timer method clears the lUserActed
flag because when it fires, it indicates that the specified
time has passed without any user activity.

To make it easier to write code to respond to
user activity or inactivity, the custom lUserActed
property has an Assign method. (I'll write about
assign methods in a future article.) That method
fires each time we change lUserActed, whether from
UserActivity or Timer. In a subclass, we can put
code in that method to take the appropriate action
based on the new value.

In the application for which I originally created
the activity timer, the goal was to begin a back-
ground activity (polling for changes on a piece of
dedicated hardware) after the user was inactive for
10 seconds, and stop it as soon as the user became
active again.

A simpler example, included in the Library
application, is to ask the user whether to shut down
the application after a period of inactivity. To create
this timer, I subclassed tmrUserActivity to create
tmrShutDown. The Interval property is set to 60000,
which is 1 minute (60,000 milliseconds). In a real
application, you'd probably set the Interval much
higher; one minute of inactivity is awfully short
for shutting down an application. The lUserActed_
Assign method, shown in Listing 14, checks whether
the new value for the property is .T. or .F. If it's .F.,
the user is prompted to indicate whether to shut
down the app. Since a period of inactivity may
mean that the user is no longer sitting in front of the
computer, the InputBox() used to prompt the user
has a timeout of one minute and a timeout default of
"Y" to shut down the app.

Listing 14. This code, in the lUserActed_Assign method of the
timer subclass, asks the user whether to shut down the app. If
the user says yes, or doesn't answer within a minute, the app is
shut down.
LPARAMETERS tuNewValue

LOCAL cResponse

* Shut down the application, if inactivity and
* user agrees
IF NOT m.tuNewValue
 cResponse = INPUTBOX(;
 "You don't seem to be doing anything. " ;
 + "Do you want to shut down this " + ;
 + "application (Y/N)?", ;
 "No activity", "Y", 60000, "Y", "N")
 IF UPPER(m.cResponse) = "Y"
 IF TYPE("goApp") = "O" AND ;
 NOT ISNULL(m.goApp)
 goApp.ShutDownApp()
 ENDIF
 ENDIF
ENDIF

This.lUserActed = m.tuNewValue

The ShutDownApp method of the application
object, as its name suggests, shuts down the appli-
cation.

The Library application uses this set-up and lets
the user decide (via the Preferences form) whether
to shut down after a period of inactivity and how
long that period should be.

Updating when a form closes
Sometimes in an application, you need to update
data in one form when another closes. When the
form that's closing is modal and was called from
the other form, this is easy because you're still in
the method that called the other form in the first
place. But when both forms are modeless, you need
a way to connect them; BindEvent() offers one way.

For simplicity, we'll assume that the form that
needs to be updated called the form that's closing.
All you need in that case is to bind the Destroy
event of the called form to a method of the calling
form, as in Listing 15.

Listing 15. The code runs a form, and binds its Destroy meth-
od to the Refresh method of the calling form.
LPARAMETERS cChildForm

LOCAL oChild

TRY
 DO FORM (m.cChildForm) NAME m.oChild

 IF NOT ISNULL(m.oChild)
 BINDEVENT(m.oChild, "Destroy", ;
 This, "Refresh")
 ENDIF
CATCH
 * Nothing to do here, maybe tell user.
ENDTRY

RETURN

May 2012 FoxRockX Page 5

In the Library application, the context menu
of the check-out form lets you open the Members
form, looking at the current member. If the user
changes some of the Member's data, we want to
update the check-out form. Because updating that
data is a little more complicated than just calling
the form's Refresh, we bind the Members form's
Destroy to a custom method of the check-out
form, RefreshMember, shown in Listing 16. (The
GetMember method retrieves the member data and
puts it in a cursor.)

Listing 16. This custom method of the check-out form re-
freshes the display of the current member. It's called when the
borrowers form closes.
* Update the display for the current member
This.GetMember(This.cCurrentMemberNum)

RETURN

The shortcut menu item "Show this member's
record" calls another custom method named
ShowBorrower, to set things up; that method is
shown in Listing 17. We pass 1 for the flags parameter
of BindEvent here to be sure that we finish closing
the form (and thus, data is saved) before we do the
refresh.

Listing 17. This method of the check-out form, called
ShowBorrower, is called when the user asks to see data for the
current borrower.
LPARAMETERS cBorrowerNum

LOCAL oBorrowerForm

DO FORM Borrowers WITH m.cBorrowerNum ;
 NAME oBorrowerForm

IF VARTYPE(m.oBorrowerForm) = "O" AND ;
 NOT ISNULL(m.oBorrowerForm)
 * Make sure we refresh this form when the
 * borrower form closes
 BINDEVENT(oBorrowerForm, "Destroy", ;
 This, "RefreshMember", 1)
ENDIF

Of course, in this case, we might actually want
to do the update not just when the borrower form
closes, but when we save the data in that form. We
can bind to the borrower form's Save method to get
that behavior.

Updating colors when the color theme
changes
I'm a big believer is sticking to the user's chosen
color scheme for most applications. Thus, I rarely
set colors for VFP controls or forms. However, there
are times when I want to highlight some feature.
Rather than choosing a color I like, I prefer to pick
a color out of the user's selected color scheme. The
Windows API function GetSysColor pulls the user's
colors from the registry, so I can use them.

If the user changes the color scheme while an
application is running, I want my application to
follow his lead. To do this, I bind to the Windows
WM_ThemeChanged and WM_SysColorChange
messages.

I've wrapped all this functionality up into a
class called GetUserColors, based on the Custom
class. The class includes methods to retrieve the
colors from the user's current scheme, and to return
a particular color from that scheme. (There's a set of
names for the various colors that roughly matches
what you see in the Advanced Appearance dialog
of the Display Properties dialog.) I won't go through
all the code for extracting the user's colors; it's fairly
straightforward.

The BindColorChanges method, called from
the Init method, sets up the binding; it's shown in
Listing 18. The two API function declarations and
the call that follows them store information about
the Windows procedure to call when handling the
event.

Listing 18. These method binds to two Windows messages, so
the application respond when the user changes colors.
PROCEDURE BindColorChanges
* Bind the info here to changes in the user's
* theme/scheme

* Prepare for binding
DECLARE integer CallWindowProc IN WIN32API ;
 integer lpPrevWndFunc, ;
 integer hWnd,integer Msg,;
 integer wParam,;
 integer lParam

DECLARE integer GetWindowLong IN WIN32API ;
 integer hWnd, ;
 integer nIndex

THIS.nOldProc=GetWindowLong(_SCREEN.HWnd, -4)
&& GWL_WNDPROC

BINDEVENT(_VFP.hWnd, 0x031A, THIS, ;
 "HandleThemeChange") && WM_THEMECHANGED
BINDEVENT(_VFP.hWnd, 0x0015, THIS, ;
 "HandleThemeChange") &&WM_SYSCOLORCHANGE

RETURN

The HandleThemeChange method, shown
in Listing 19, is called when the user changes the
theme or an individual color. First, it ensures that
the appropriate Windows code executes; this is the
equivalent of issuing DODEFAULT() in a method
of a VFP subclass. Then, it simply rereads the user's
colors into the object, so that it always holds the
current colors.

Listing 19. This method is the delegate for two Windows
events that occur when the user changes Windows colors. It
re-reads the components of the current color scheme.
PROCEDURE HandleThemeChange
* Respond to user's change of theme/scheme

LPARAMETERS hWnd as Integer, Msg as Integer, ;
 wParam as Integer, lParam as Integer

Page 6 FoxRockX May 2012

LOCAL lResult
lResult=0

* Note: for WM_THEMECHANGED, MSDN indicates
* the wParam and lParam
* are reserved so can't use them.

lResult=CallWindowProc(this.nOldProc, hWnd, ;
 msg, wParam, lParam)

This.ReadUserColors()

RETURN lResult

To take advantage of this, the base form class
instantiates the GetUserColors object in Init, then
loads the needed colors into the form. It then binds
the GetUserColors.ReadUserColors method to the
form's GetUserColors method. Listing 20 shows the
part of frmBase.Init that sets things up.

Listing 20. The base form class sets things up so that the
user's colors are available to the form, and get updated when
the user changes the Windows colors.
* Load color object
This.oColors = NEWOBJECT("GetUserColors", ;
 "GetUserColors.PRG")
This.GetUserColors()

* Bind to color changes
BINDEVENT(This.oColors, "ReadUserColors", ;
 This, "GetUserColors", 1)

At present, I'm only using three of the color scheme
colors directly, so the form class's GetUserColors
method (shown in Listing 21) is fairly simple.

Listing 21. The GetUserColors form method fires whenever
colors are re-read from the Registry.
* Load colors from user's current theme/scheme
This.nDisabledForeColor = ;
 This.oColors.GetAColor("APPWORKSPACE")
This.nDisabledBackColor = ;
 This.oColors.GetAColor("WINDOW")
This.nHighlightColor = ;
 This.oColors.GetAColor("HIGHLIGHT")

The final piece of this scheme is a way to update
the actual colors used by various controls when the
user changes colors. That's handled by subclasses
of the base control classes. For example, the
lblHighlight class is used to show a label colored
with the user's specified highlight color, rather
than the default text color. It has a custom method,
GetHighlightColor, shown in Listing 22, and called
from the label's Init. The method sets the ForeColor
of the label to the form's stored nHighlightColor.
The Init method (shown in Listing 23) also binds
changes to that property to the same method.
That is, whenever the form's nHighlightColor is
changed, GetHighlightColor fires and updates the
label's ForeColor.

Listing 22. This code is called by the Init of the lblHighlight
class to set the text color for the label and each time the user
changes system colors.
IF PEMSTATUS(ThisForm, "nHighlightColor", 5)
 This.ForeColor = ThisForm.nHighlightColor
ENDIF

Listing 23. This code in the label's Init method ensures that
the label's color changes whenever the user changes system
colors.
DODEFAULT()

IF PEMSTATUS(ThisForm, "nHighlightColor", 5)
 This.SetHighlightColor()
 BINDEVENT(ThisForm, "nHighlightColor", ;
 This, "SetHighlightColor", 1)
ENDIF

The Library classes also include
edtEnhancedDisabled and txtEnhancedDisabled
that work similarly.

To demonstrate, run the Borrower form and
choose a borrower. Note the blue message about
the borrower's status. Leave the form open and
change the color for Selected Items. Come back to
the Borrower form and note that the status message
now uses your new color.

One warning here. In my testing, sometimes,
Windows hadn't completely updated the colors by
the time ReadUserColors ran. That is, the colors
returned were not always the new colors. In general,
I got better results if I waited longer between
choosing a new color scheme or theme and clicking
the Apply button in the Display Properties dialog.

Give it a try
When I sat down to start writing about BindEvent(),
I had no idea how many different ways I was
already using it. As I reviewed code I'd written, I
found lots of ways that BindEvent() let me meet
user expectations.

I hope my examples give you ideas about how
to improve your own applications.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s Solutions,
LLC. She has developed and enhanced numerous Visual
FoxPro applications for businesses and other organizations.
Tamar is author or co-author of nearly a dozen books
including the award winning Hacker’s Guide to Visual
FoxPro, Microsoft Office Automation with VisualFoxPro
and Taming Visual FoxPro’s SQL. Her latest collaboration
is Making Sense of Sedna and SP2. Her books are available
from Hentzenwerke Publishing (www.hentzenwerke.com).
Tamar was a Microsoft Support Most Valuable Professional
from the program's inception in 1993 until 2011. She is one
of the organizers of the annual Southwest Fox conference.
In 2007, Tamar received the Visual FoxPro Community
Lifetime Achievement Award. You can reach her at tamar@
thegranors.com or through www.tomorrowssolutionsllc.com.

