
Page 2 FoxRockX July 2012

od lets me avoid having to ensure that a property
gets updated every time the things it depends on
change. I do the update when I actually need the
value.

Adding Access and Assign methods to a prop-
erty is somewhat different from adding custom
methods to an object. In the Property Sheet, right-
click on the property in question, and choose Edit
Property/Method. In the Edit Property/Method
dialog, there are checkboxes for Access Method and
Assign Method; check one or both. Access methods
are created with a single line of code that returns
the property's value. Assign methods are created
with the new value passed as a parameter and a
single line assigning that value to the property.
Once they exist, you can edit the code as you desire.

Many of the examples in this article are drawn
from the same Library application used for the
BindEvent() articles; the code is included in this
month's downloads.

Using Access methods
As I said earlier, my principal use for Access
methods is to update a property when it's needed.
However, they also offer a workaround for a VFP
bug.

Just-in-time updating
When the value of a property is based on other
items that can change as the application runs, an
Access method lets us look up or compute the value
when it's needed. Doing so serves several purpos-
es. First, we don't have to insert calls (or use Assign
methods) to update the property every time one of
its components changes. Second, it's a kind of en-
capsulation. Only the property has to know how to
find its own value. If the rules for generating the
value change, the only thing we have to change is
the Access method (or a custom method it calls).

For example, in Figure 1. the block that says
"Minor Alarm" indicates the overall status of the
displayed node (a node here is a utility substation);
the determination of a node's status involves check-

In my last two articles, I demonstrated BindEvent(),
the VFP function that lets you set up a method to
respond when an event fires. In this article and the
next, I'll take a look at Access and Assign methods,
another VFP approach to provide automatic behav-
ior.
Access and Assign methods were introduced in
VFP 6, and essentially allow you to define your
own events in an application. Any property can
have an Access method, an Assign method or both.
The Access method fires whenever the property is
referenced, while the Assign method fires when-
ever the property changes. Each of them allows you
to change the value of the property as well as take
other actions.

These methods are named by combining
the property name, an underscore, and the word
"Access" or "Assign." For example, an Access
method for the property Enabled is called Enabled_
Access.

The Assign method receives the new value (the
one you're assigning) as a parameter. In the code,
you can assign any value you want to the prop-
erty, not just the one it receives as a parameter.
So, among other things, you can use the Assign
method to make a property read-only or read-only
under some circumstances. Most often, though, I
use Assign methods to ensure that certain things
happen when the value of the property changes. In
other words, an Assign method becomes an event
upon which I can take action.

In the Access method, you can control what
value the triggering code sees as the value of the
property. The value you return from the Access
method is used by the triggering code, even if the
actual value stored in the property is different. For
example, you could translate the value into a dif-
ferent language based on an application or system
setting, or convert it from a convenient internal
storage mechanism to a friendlier user format (say,
 numeric to character). Most often, I use Access
methods to ensure that a property is up-to-date
based on current settings. That is, an Access meth-

Put Access methods to
work
Access and Assign methods give you a chance to intervene when a property is
referenced or changed. Access methods are particularly useful for just-in time
calculations.

Tamar E. Granor, Ph.D.

July 2012 FoxRockX Page 3

ing a number of conditions. The application moni-
tors the corresponding hardware and when there
are changes, updates the form. The node's status is
stored in a property called cStatus; cStatus's Access
method (cStatus_Access) calls another method that
computes the current status and returns the com-
puted value. The form then displays that value
and colors the background around it appropriately
(red for "Major Alarm", orange for "Minor Alarm",
green for "Normal").

In the same application, a number of forms
indicate the last time complete data was read from
the hardware; Figure 2. shows an example. There's
a lot of data to read, so some data is only read either
by user request or when the form that displays
the data item is open. Rather than updating the
form-level timestamp each time an item is read, an
Access method loops through all the relevant items
and updates the form-level timestamp when the
form is first displayed and each time it's refreshed.

The data-handling form class in the Library
application, frmBizObjAware, uses this strategy to
determine the first control on the form in tab order.
The class has a custom property, cFirstControl; if
the developer of a particular form sets the property
at design-time, the specified control is treated as
the first property. However, that's an easy thing for
a developer to forget, so an access method for the
property cycles through the controls on the form
and sets the property based on the TabOrder of
the various controls. Listing 1 shows the code in
cFirstControl_Access.

Listing 1. This code ensures that a first control is specified on
the form, even if the developer forgets to indicate which control
comes first.
* Handle the possibility that no first control
* has been set
LOCAL oControl, oLowControl, nLowTab

IF EMPTY(THIS.cFirstControl)
 * Figure it out
 nLowTab = 1000000
 FOR EACH oControl IN THISFORM.OBJECTS
 IF PEMSTATUS(oControl, "TabIndex", 5) ;
 AND PEMSTATUS(oControl, "SetFocus", 5)
 IF oControl.TABINDEX < nLowTab
 oLowControl = oControl
 nLowTab = oControl.TABINDEX
 ENDIF
 ENDIF
 ENDFOR

 THIS.cFirstControl = oLowControl.NAME
ENDIF

RETURN THIS.cFirstControl

This code is used, for example, in the New but-
ton. After adding a new record and appropriately
enabling and disabling controls, focus is set to the
first control on the form. Listing 2 shows the code
in the form class's New method.

Listing 2. This code in frmBizObjAware.New sets focus to the
form's designated first control. The access method in Listing
1 is called to make sure that cFirstControl has a non-empty
value.
* Add a record in this form
LOCAL lReturn

IF MethodExists(This.oBizObj, "New")

Figure 1. The node status shown in the upper right corner of this form is computed each time the form is refreshed. An access method
for the node's cStatus property calls the appropriate method.

Page 4 FoxRockX July 2012

 lReturn = This.BeforeNew()
 IF lReturn
 lReturn = This.oBizObj.New()
 IF lReturn
 This.lNewRecord = .T.
 This.lDataChanged = .F.
 lReturn = This.AfterNew()

 oFirstControl = EVALUATE("This." ;
 + This.cFirstControl)
 oFirstControl.SetFocus()
 ENDIF
 ENDIF

ENDIF

RETURN lReturn

Dynamic tooltips
In the form shown in Figure 1, we need
to show tooltips for each of the numbered
boxes, which represent ports; the content
of the tooltip is determined by the current
status of the port. An Access method
provides an easy way to do what's needed;
just build and return the appropriate
string in the ToolTipText_Access method.

In the Catalog form of the Library
application, it would be useful to be able
to show all the details about a book's
current status in a tooltip on the Copy
page. (In fact, we might actually want
to put the information on that page, but for the
purpose of demonstrating this technique, we'll use
a tooltip.) The information on that page is displayed
in a container whose class is cntCopyInformation;
Listing 3 shows the ToolTipText_Access method for
that container.

Lis ting 3. The code in the ToolTipText_Access method calls a
form method to build the tooltip.
*Check whether the book is out and build a
*tooltip with that info
RETURN ThisForm.GetBookDetail(;
 ThisForm.cBarCode)

The form's GetBookDetail method looks
up the book currently displayed and builds
the appropriate string to display. Figure 3
shows an example.

Dele gating tooltips for contained
objects
The example in Figure 3 also demonstrates
another use for Access methods. In a
container like the one shown, we may
want the same tooltip for all controls. One
easy way to do that is to have the Access
method for a control's ToolTipText return

the parent's ToolTipText, along the lines of
Listing 4.

List ing 4. To give a container and its contents the
same tooltip, put code like this in the contained controls'
ToolTipText_Access method.

RETURN This.Parent.ToolTipText

A little code in the base classes lets us set this
up across the board, so we can turn it on for a given
container by setting a single property. First, add a
custom property to cntBase, the base container class;
call it lBindToolTip. (Using the word "bind" here

is a little misleading since it implies BindEvents,
but in fact, we are really binding the container
control's ToolTipText to the parent.) Then, in the
ToolTipText_Access method for each control class
that has a ToolTipText method, put the code in
Listing 5. Then, all you have to do to ensure that
everything in a container shows the same tooltip is
set the container's lBindToolTip property to .T.

List ing 5. Put this code in the ToolTipText_Access method of
each base control class.
* Check whether we're supposed to be passing
* tooltips up
LOCAL cTip

Fig ure 2. In this form, the last read value at the bottom indicates the
oldest timestamp for any of the settings shown on the form. Rather than
update each time a setting changes, an Access method fi nds the right
value when it's needed.

Figu re 3. The tooltip for the container on the Copy page is built on the fl y using the
Access method of ToolTipText.

July 2012 FoxRockX Page 5

IF PEMSTATUS(This.Parent, "lBindToolTip", 5) ;
 AND This.Parent.lBindToolTip
 cTip = This.Parent.ToolTipText
ELSE
 cTip = This.ToolTipText
ENDIF

RETURN m.cTip

Grid component tooltips
A similar approach allows you to work around a
bug in VFP 9 SP2; the contained objects of a grid
don't show their own tooltips, but the tooltip of
the grid. An Access method
for the grid's ToolTipText
property lets you drill down
into the contained objects and
use their ToolTipText instead.

In the library application,
the top-level grid class,
grdBase, has the code in Listing
6 in its ToolTipText_Access
method. This code actually
combines the technique
in the previous section for
propagating tooltips down
from containers with the
ability to give controls inside
a grid their own tips. It checks
fi rst whether the parent of
the grid has the lBindToolTip
property set to .T. If so, it uses
the parent's tip; if not, it drills
into the grid and allows the
controls inside to provide tips.

List ing 6. Use ToolTipText_Access
to work around the VFP 9 SP2 bug
regarding tooltips in grids.
* Check whether we're supposed to be passing
* tooltips up
LOCAL cTip

IF PEMSTATUS(This.Parent, "lBindToolTip", 5) ;
 AND This.Parent.lBindToolTip
 cTip = This.Parent.ToolTipText
ELSE
 * Let components have their own tooltips.
 * Look up the tooltip for the object
 * currently under the mouse.
 LOCAL aMousePos[1], oColumn, oControl

 cTip = ""

 IF AMOUSEOBJ(aMousePos) > 0
 oColumn = aMousePos[1]
 IF NOT ISNULL(m.oColumn) AND ;
 UPPER(oColumn.BaseClass) = "COLUMN"
 * First, grab column-level tip in
 * case we don't fi nd something below
 cToolTip = oColumn.ToolTipText

 * Now, look for the right control.
 oControl = EVALUATE("oColumn." + ;
 oColumn.CurrentControl)
 IF NOT EMPTY(oControl.ToolTipText)

 cTip = oControl.ToolTipText
 ENDIF
 ENDIF
 ENDIF
ENDIF

RETURN m.cTip

In the application, the CheckOut form has a
tooltip for the delete button in the third column; it's
shown in Figure 4.

Next up, Assign
I hope these examples give you some ideas as to
how Access methods can enhance your applica-
tions. In my next article, I'll demonstrate Assign
methods.

Author Profi le
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s Solutions,
LLC. She has developed and enhanced numerous Visual
FoxPro applications for businesses and other organizations.
Tamar is author or co-author of nearly a dozen books
including the award winning Hacker’s Guide to Visual
FoxPro, Microsoft Offi ce Automation with VisualFoxPro
and Taming Visual FoxPro’s SQL. Her latest collaboration
is Making Sense of Sedna and SP2. Her books are available
from Hentzenwerke Publishing (www.hentzenwerke.com).
Tamar was a Microsoft Support Most Valuable Professional
from the program's inception in 1993 until 2011. She is one
of the organizers of the annual Southwest Fox conference.
In 2007, Tamar received the Visual FoxPro Community
Lifetime Achievement Award. You can reach her at tamar@
thegranors.com or through www.tomorrowssolutionsllc.com.

Figur e 4. The tooltip shown comes from the button, not the grid. The ToolTipText_Access meth-
od fi nds the right tip to display.

