PIVOT = Crosstabs, SQL

Style

SQL Server’s PIVOT keyword lets you create crosstabs

Tamar E. Granor, Ph.D.

A crosstab is a result table or cursor where the set
of columns is based on data values in the source.
My last article looked at creating crosstabs in VEP,
where you can’t create a crosstab with just a query.
Since SQL Server 2005, however, you can create
crosstabs without any additional code or tools.

Suppose you want to know how many employees
AdventureWorks has in each country for each job
title. The query in Listing 1 answers the question,
but the form of the result (partially shown in Fig-
ure 1) makes it hard to grasp. The query is included
in this month’s downloads as JobTitleByCountry.
SQL.

Listing 1. This query provides the number of employees with
each job title in each country, but each record represents one
job title/country combination.

SELECT JobTitle, CR.Name, Count (*) AS EmpCount
FROM [HumanResources].[Employee]
JOIN [Person].[BusinessEntityAddress] BEA
ON Employee.BusinessEntityID =
BEA.BusinessEntityID
JOIN [Person].[Address]
ON BEA.AddressID = Address.AddressID
JOIN [Person].[StateProvince] SP
ON Address.StateProvincelID =
SP.StateProvincelID
JOIN [Person].[CountryRegion] CR
ON SP.CountryRegionCode =
CR.CountryRegionCode
WHERE Employee.CurrentFlag = 1
GROUP BY JobTitle, CR.Name
ORDER BY JobTitle, CR.Name

Recruiter United States 2
Research and Development Engineer United States 2
Research and Development Manager United States 2
Sales Representative Australia 1
Sales Representative Canada 2
Sales Representative France 1
Sales Representative Germany 1
Sales Representative United King... 1
Sales Representative United States 8
Scheduling Assistant United States 4
Senior Design Engineer United States 1

Figure 1. Each row here shows the number of employees with
the specified job title in the specified country.

Page 6 FoxRockX

A better format would be to have one column
for each country and one row for each job title, with
the intersection of the two containing the number
of employees in that country with that job title. As
shown in my last article, in VFP, one way to get this
result, especially when the number of countries is
small, is to use SUM(IIF()) to do the counting. You
can do something analogous in T-SQL, using CASE
rather than IIF. Listing 2, included in this month’s
downloads as JobTitleByCountryCase.SQL, shows
code to do it this way. Figure 2 shows partial results,
much easier to interpret than the previous version.

Listing 2. You can create a simple crosstab using CASE to
break out the individual columns.

SELECT JobTitle,
SUM (CASE CR.Name WHEN 'Australia'
THEN 1 ELSE 0 END) AS nAustralia,
SUM (CASE CR.Name WHEN 'Canada'
THEN 1 ELSE 0 END) AS nCanada,
SUM (CASE CR.Name WHEN 'France'
THEN 1 ELSE 0 END) AS nFrance,
SUM (CASE CR.Name WHEN 'Germany'
THEN 1 ELSE O END) AS nGermany,
SUM (CASE CR.Name WHEN 'United Kingdom'
THEN 1 ELSE 0 END) AS nUK,
SUM (CASE CR.Name WHEN 'United States'
THEN 1 ELSE 0 END) AS nUSA
FROM [HumanResources] . [Employee]
JOIN [Person].[BusinessEntityAddress] BEA
ON Employee.BusinessEntityID =
BEA.BusinessEntityID
JOIN [Person].[Address]
ON BEA.AddressID = Address.AddressID
JOIN [Person].[StateProvince] SP
ON Address.StateProvincelD =
SP.StateProvincelD
JOIN [Person].[CountryRegion] CR
ON SP.CountryRegionCode =
CR.CountryRegionCode
WHERE Employee.CurrentFlag = 1
GROUP BY JobTitle
ORDER BY JobTitle

July 2016

JobTitle nAustralia nCanada nFrance nGermany nUK nUSA
Purchasing Manager 0 0 0 0 0 1
Quality Assurance Manager 0 0 0 0 0 1
Quality Assurance Supervisor 0 0 0 0 0 1
Quality Assurance Technician 0 0 0 0 0 4
Recruiter 0 0 0 0 0 2
Research and Development Engineer 0 0 0 0 0 2
Research and Development Manager 0 0 0 0 0 2
Sales Representative 1 2 1 1 1 8
Scheduling Assistant 0 0 0 0 0 4
Senior Design Engineer 0 0 0 0 0 1
Senior Tool Designer 0 0 0 0 0 2
Shipping and Receiving Clerk 0 0 0 0 0 2
Shipping and Receiving Supervisor 0 0 0 0 0 1

Figure 2. Using CASE with SUM() gives one column per
country and makes the results more readable.

But T-SQL offers an easier way to do this.

Introducing PIVOT

The PIVOT operator provides a way to crosstab
without having to write out all the CASE expres-
sions. PIVOT goes into the FROM clause of the
query. Listing 3 shows the syntax for using PIVOT.

In my experience, this is a case where it’s easi-
est to use “*” rather than listing specific field names.
The source table can be an actual table, a derived
table, or a table created as part of a CTE.

Listing 3. The PIVOT operator appears in the FROM clause of
a query and specifies an aggregation function.

SELECT <non-pivoted column>,
<list of pivoted columns with aliases>

FROM <source table>
PIVOT
(<aggregation function>(<column to aggregate>)

FOR [<column name column>]

IN (<list of wvalues>)

) AS <alias for the pivot table>

The interesting part is what goes after the
PIVOT keyword. First, you need an aggregation
function, such as SUM(OrderTotal). After FOR, you
list the name of the source column whose values
are to become columns in the result. In the job title
by country example, that’s the Country column.

Finally, after IN, you have to include a list of
all the values of
interest. Having JobTitle
an explicit list Purchasing Manager
is both a gOOd Quality Assurance Manager

thing and a bad Quality Assurance Supervisor
thing. It's a gOOd Quality Assurance Technician
thing because
it allows you to
include only a
subset of the val-
ues from the rele-

vant column. It's

a bad thing, of Sehlo‘r Tool Desugn‘e-r
course, because Shipping and Receiving Clerk

it requires you to

Recruiter

Research and Development Engineer
Research and Development Manager
Sales Representative

Scheduling Assistant

Senior Design Engineer

O 0000 - 00000 o0 o

Shipping and Receiving Supervisor

Australia

Listing 4 shows a query using PIVOT that pro-
duces the same results as the query in Listing 2. A
CTE collects the list of employees with their job
titles and countries. The main query uses PIVOT
to count the number of employees by country.
The CTE has three columns: JobTitle, Country and
EmplID. The main query specifies that all three are
in the result (SELECT *), but the PIVOT clause indi-
cates that Country determines the columns (the
column headers are the actual values from Coun-
try), and that EmplID is aggregated, in this case, by
counting. Figure 3 shows partial results. The query
is included as JobTitleByCountryPivot.SQL in this
month’s downloads.

Listing 4. This query pivots on country to produce one record
per job title with a column for each country where any employ-
ees are located.

WITH csrJobCountry
(JobTitle, Country, EmpID)
AS
(SELECT JobTitle, CR.Name,
Employee.BusinessEntityID
FROM [HumanResources].[Employee]
JOIN [Person].[BusinessEntityAddress] BEA
ON Employee.BusinessEntityID =
BEA.BusinessEntityID
JOIN [Person] . [Address]
ON BEA.AddressID = Address.AddressID
JOIN [Person].[StateProvince] SP
ON Address.StateProvincelID =
SP.StateProvincelID
JOIN [Person].[CountryRegion] CR
ON SP.CountryRegionCode =
CR.CountryRegionCode
WHERE Employee.CurrentFlag = 1
)

SELECT *
FROM csrJobCountry
PIVOT (COUNT (EmpID)
FOR Country
IN (Australia, Canada, France, Germany,
[United Kingdom], [United States]))
AS EmpTotal

Canada France Germany United Kingdom United States
1

O 0O 0O OO NOO OO O O O
0O 0O 000 - 0 0 00 0 O o
O OO0 00 - 00 00 0O O o
0O 0O 0 00 -0 0 00 o0 o o
- NN = B 0ONNNDBI =

know the list of Figure 3. The results here are the same as in Figure 2 except for the column headers, which are the actual coun-

values from that try names from the CountryRegion table.
column.

July 2016

FoxRockX Page 7

I suspect that the most commonly used
function in the pivot is SUM, letting you see some
kind of total across a set of time periods or regions
or other way of dividing up data. For example,
Listing 5 produces total sales for each salesperson
for each year; Figure 4 shows partial results. This
query is included in this month’s downloads as
SalesPersonAnnualSalesCTE.SQL.

Listing 5. Here, total sales for each salesperson for each year
is computed.

WITH SalesByYear

(SalesPersonlID, SalesYear, SubTotal)
AS
(SELECT SalesPersonID, YEAR(OrderDate),
SubTotal

FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL)

SELECT *
FROM SalesByYear
PIVOT (SUM (SubTotal)
FOR SalesYear

Listing 6. A query that uses PIVOT can be a CTE, so you can
add more data.

WITH SalesByYear

(SalesPersonID, SalesYear, SubTotal)
AS
(SELECT SalesPersonlID, YEAR(OrderDate) ,
SubTotal

FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL),

SalesByYearPivot
AS
(SELECT *
FROM SalesByYear
PIVOT (SUM (SubTotal)
FOR SalesYear
IN ([2011],
AS TotalSales)

[2012], [2013], [2014]))

SELECT Person.FirstName,
SalesByYearPivot.*
FROM SalesByYearPivot
JOIN Person.Person
ON SalesByYearPivot.SalesPersonID =
Person.BusinessEntityID
ORDER BY LastName, FirstName

Person.LastName,

Getting meaningful

IN ([2011], [2012], [2013], [20141))
AS TotalSales
ORDER BY SalesPersonlID

SalesPersonlD 2011 2012 2013

274 28926.2465 453524.5233 431088.7238
275 875823.8318 3375456.8947 3985374.8995
276 1149715.3253 3834908.674 4111294.9056
277 1311627.2918 4317306.5741 3396776.2674
278 500091.8202 1283569.6294 1389836.8101
279 1521289.1881 2674436.3518 2188082.7813
280 648485.5862 1208264.3834 963420.5805
281 967597.2899 2294210.5506 2387256.0616
282 1175007.4753 1835715.8705 1870884.182
283 599987.9444 1288068.7236 1351422.362
284 NULL 441639.5961 1269908.9235
285 NULL NULL 151257.1152
286 NULL NULL 836055.1236
287 NULL 116029.652 560091.7843

2014
178584 .3625 column names
10572473786 By default, the list you include
12710885216 10 the IN portion of PIVOT
1040093 4071 determines the names of pivoted
P columns. So, in the sales example,
= the columns are called 2011, 2012,
787204.4289 etc., while in the jobs example,
504932.044

777941.6519
1044810.8277

they’re the names of the countries.
(This also explains why numeric
values or values containing

490466.319 spaces need to be surrounded
600997.1704 by square brackets; that’s the
21267 336 standard way of referring to a
5357558005 column with a name that can’t
56637 7478 stand alone.)

Figure 4. Each row here represents one salesperson, while each column represents a year.
The intersection shows the dollar total of sales for that salesperson for that year.

However, you can actually
specify alternative names for
these columns in the field list of
the query, just as you can for any

In this example, again, the CTE includes exactly
three columns. One (SalesPersonlD) determines the
rows, one (SalesYear) determines the columns, and
one (SubTotal) is aggregated to

field. The query in Listing 7 pulls sales data for one

year and then pivots on month. The field list changes

FirstName LastName
Syed Abbas
Alberts

produce the data values.

Of course, this data would be Amy

more useful with the salespeo- FPemela Ansman-Wolfe
. Michael Blythe
ple’s names as well as their IDs. : L
. David Campbell
You can turn the query with the ., Carson

PIVOT into a CTE and add the shu Ito

names afterward, as in Listing 6 Stephen Jiang
(which is included in this month’s I;‘:a mz::r""a"
downloads as SalesPersonAnnu- ¥
alSalesWithNameCTE.SQL. Par- e Reiter

tial results are shown in Figure 5.
CTE.

Page 8

SalesPersonlD 2011 2012 2013 2014

285 NULL NULL 151257.1152 21267.336
287 NULL 116029.652 560091.7843 56637.7478
280 6484855862 1208264.3834 963420.5805 504932.044
275 875823.8318 3375456.8947 3985374.8995 1057247.3786
283 599987.9444 1288068.7236 1351422.362 490466.319
277 1311627.2918 4317306.5741 3396776.2674 1040093.4071
281 967597.2899 2294210.5506 2387256.0616 777941.6519
274 28926.2465 453524.5233 431088.7238 178584.3625
284 NULL 441639.5961 1269908.9235 600997.1704
276 1149715.3253 3834908.674 4111294.9056 1271088.5216
289 NULL 3014278.0472 4106064.0146 1382996.5839
279 1521289.1881 2674436.3518 2188082.7813 787204.4289

FoxRockX

Figure 5. Salesperson names are added to this pivoted result by putting the pivot into a

July 2016

the names for those columns from the numeric
month to the standard abbreviations. Figure 6
shows partial results, and the query is included as
SalesPerson2013MonthlySalesWithMonthNames.
SQL in this month’s downloads.

Listing 7. You can rename pivoted columns in the field list of
the query.

WITH SalesByMonth
AS

For example, the query in Listing 8 has one
row for each salesperson for each month. The CTE
result has four fields: salesperson ID, month, year
and invoice amount. The main query totals the
invoice amount and specifies that year determines
the columns. That leaves both salesperson ID
and month to specify the rows. Partial results
are shown in Figure 7. The query is included as
SalesPersonMonthlySales.SQL in this month’s

(SELECT SalesPersonlID, downloads.
MONTH (OrderDate) As SalesMonth,

SubTotal Listing 8.This query uses two fields (SalesPersonID and

FROM Sales.SalesOrderHeader SalesMonth) to specify the rows in the pivoted result.

WHERE SalesPersonID IS NOT NULL WITH csrSalesByYear
AND YEAR (OrderDate) = 2013) AS
(SELECT SalesPersonlD,

SELECT SalesPersonlD, MONTH (OrderDate) As SalesMonth,

[1] AS Jan, [2] AS Feb, [3] AS Mar, YEAR (orderDate) AS SalesYear,
[4] AS Apr, [5] AS May, [6] AS Jun, SubTotal
[7] AS Jul, [8] AS Aug, [9] AS Sep, FROM Sales.SalesOrderHeader
[10] AS Oct, [11] AS Nov, [12] AS Dec WHERE SalesPersonID IS NOT NULL)
FROM SalesByMonth
PIVOT (SUM (SubTotal) SELECT *
FOR SalesMonth FROM csrSalesByYear
IN ([1], [2], (31, (41, (51, (61, (71, PIVOT (SUM(SubTotal)
(81, [91, [10], [11], [12])) FOR SalesYear
AS TotalSales IN ([2011], [2012], [2013], [2014]))
ORDER BY SalesPersonID; AS TotalsSales
ORDER BY SalesPersonID, SalesMonth;
SalesPersonlD Jan Feb Mar Apr May Jud
274 | NULL 432542036 52553088 1466.01 NULL 1 Aggregating on
275 260648.3902 314936.4504 376270.9093 327588.3495 2482922912 4 mor th n n
276 164516.324 88379.2611 614957.4404 263161.852 308192.3055 6 ore a one
277 186124.981 400651.4944 383608.9199 277065.913 262105.7294 COIu mn
278 687208323 80915083 2145208152 80733.1441 16659.9281 270 A more complicated problem
279 125988.2839 1725274835 212608.3495 148977.4823 170875.4565 2 is Computing more than one
280 344273177 491524316 NULL 32195.7427 112336.0762 6 aggregate result. For example,
281 186406.7991 87934.131 194265.9328 238055.2337 354330.5892 1 suppose you want to get both
282 115841.3487 47113.0052 69036.5755 79163.3631 1524844903 1
total sales and the number of
283 42441186 155124.1524 106704.8744 2802.5973 1721066824 1 sales b ear for each sales
284 30335.6999 9479.9522 219048.6425 35479.6027 98549.9789 1 y ¥y . .
person. You might think that

you could simply list mul-
tiple aggregate functions after
PIVOT, but that doesn’t work.

Figure 6. One year’s sales were pivoted by month. Then, the field names were replaced by
something more meaningful.

This query also shows

b it A : SalesMonth 2011 2012 2013 2014
;\;EIEIEl(tHS" genera l%sag}rer(t)oﬁlse 5 NULL 795142242 NULL 1414.248
. lnkit et o kf er- 2 NULL 33406.7043 432542036 NULL
“?fj’yﬁllnei) 0 list each prv= 3 NULL NULL 52553088 139517.1925
oted column Dy name. 4 NULL 446706854 1466.01 NULL
5 NULL 3575.7202 NULL 37652.922
Determining rows by 6 NULL 55616.5989 129426.5658 NULL
: 7 20544.7015 523.788 88118.9333 NULL
multiple columns
8 2039.994 56210.9496 1946.022 NULL
In the examples above, the set
. 9 NULL 2709.6518 90806.321 NULL
of rows was determined by a 10 6341551 79994.1743 NULL NULL
single field, JobTitle in the first - -
} 1 NULL NULL 70815.3593 NULL
case and SalesPersonID in the
. . 12 NULL 97302.0266 NULL NULL
others. But it's possible to use
. X . 1 NULL 283832.0699 260648.3902 2481255411
multiple fields to specify the
. 2 NULL 143767.8366 314936.4504 NULL
rows. All you have to do is have
3 NULL 172429.5757 376270.9093 439114.8552

multiple columns in the query
that aren’t listed in the PIVOT Figure 7. Here, the pivot result uses two columns to distinguish the rows.

clause.

July 2016 FoxRockX Page 9

In fact, to include multiple pivoted aggrega-
tions, you have to perform the pivots separately
and then join the results. You also have to make
sure that whatever you're selecting from contains
only the columns relevant to that particular aggre-
gation.

The easiest way to do this is with a series of
CTEs,asin Listing 9. The firsttwo CTEs, SalesBy Year
and SalesTotal, are the same as previous examples,
producing one row per salesperson with one
column per year. The final CTE, SalesCount,
produces one row per salesperson with one column
per year containing the number of orders for that
salesperson in that year. Finally, the main query
joins SalesTotal and SalesCount on SalesPersonID,
including all the pivoted columns from each of
them. Figure 8 shows partial results. This query is
included as SalesPersonAnnualSalesMulti.SQL in
this month’s downloads.

Listing 9.To pivot and aggregate on multiple columns, you
have to do each pivot separately, and then join the results.

WITH SalesByYear
(SalesPersonlD,
AS
(SELECT SalesPersonlD,
YEAR (OrderDate), SubTotal
FROM Sales.SalesOrderHeader
WHERE SalesPersonID IS NOT NULL),

SalesYear, SubTotal)

SalesTotal
AS
(SELECT SalesPersonlD,

[2011] AS Total2011,
[2012] AS Total2012,
[2013] AS Total2013,
[2014] AS Total2014

FROM SalesByYear
PIVOT (SUM (SubTotal)

FROM SalesByYear
PIVOT (COUNT (SubTotal)
FOR SalesYear
IN ([2011],

AS Sales)

[2012], [2013], [2014]))

SELECT ST.SalesPersonlID,

SC.Count2011, ST.Total2011,
SC.Count2012, ST.Total2012,
SC.Count2013, ST.Total2013,
SC.Count2014, ST.Total2014

FROM SalesTotal ST

JOIN SalesCount SC
ON ST.SalesPersonID = SC.SalesPersonID
ORDER BY ST.SalesPersonID

In my initial attempts at doing this (because,
for some reason, I mistakenly thought that doing
COUNT (Subtotal) would count only distinct
values), I tried using a single CTE containing
both Subtotal and SalesOrderID as the source for
both pivots. However, even though the unneeded
field was omitted from the field list of the queries
performing the pivots, the field was still used in
determining the rows of the result. Every field in the
source table for a pivot is used either in determining
rows, determining columns, or aggregation. The
query in Listing 10 demonstrates the issue. The CTE
includes SalesOrderID, though it's not mentioned in
the main query. Nonetheless, the results (partially
shown in Figure 9) have one row per sales order
rather than one row per salesperson. This faulty
query is included in this month’s downloads as
SalesPersonAnnualExtraField.SQL

Listing 10. Every field in the table specified for a pivot is used
somehow. If it's not otherwise specified, it helps determine the
list of rows.

WITH SalesByYear

FOR SalesYear (SalesPeisonID, SalesYear,
IN ([2011], [2012], [2013], [2014])) s SubTotal, OrderiD)
AS TotalSales), (SELECT SalesPersonID, YEAR (OrderDate),
SalesCount SubTotal, SalesOrderID
s FROM Sales.SalesOrderHeader
(SELECT SalesPersoniD, WHERE SalesPersonID IS NOT NULL)
[2011] AS Count2011, SELECT SalesPersonlID,
[2012] AS Count2012, [2011] AS Total2011,
[2013] AS Count2013, [2012] AS Total2012,
[2014] AS Count2014
SalesPersonlD Count2011 Total2011 Count2012 Total2012 Count2013 Total2013 Count2014 Total2014
4 28926.2465 22 453524.5233 14 431088.7238 8 178584.3625
275 65 875823.8318 148 3375456.8947 175 3985374.8995 62 1057247.3786
276 46 1149715.3253 151 3834908.674 162 41112949056 59 1271088.5216
277 59 1311627.2918 166 4317306.5741 185 3396776.2674 63 1040093.4071
278 30 500091.8202 80 1283569.6294 89 1389836.8101 35 435948.9551
279 63 1521289.1881 153 2674436.3518 159 2188082.7813 54 787204.4289
280 22 6484855862 45 1208264.3834 19 963420.5805 9 504932.044
281 33 967597.2899 74 2294210.5506 98 2387256.0616 37 777941.6519
282 56 1175007.4753 86 1835715.8705 86 1870884.182 43 1044810.8277
283 28 599987.9444 63 1288068.7236 72 1351422.362 26 490466.319
284 0 NULL 24 441639.5961 82 1269908.9235 34 600997.1704
285 0 NULL 0 NULL 12 1512571152 4 21267.336

Figure 8. By joining the results of two separate pivots, we can do two different aggregations.

Page 10

FoxRockX

July 2016

[2013] AS Total2013,
[2014] AS Total2014
FROM SalesByYear
PIVOT (SUM(SubTotal)
FOR SalesYear

IN ([2011], ([2012], [2013],

AS TotalSales

SalesPersonlD Total2011
T — 1294 2500
282 32726.4786
282 28832.5289
276 419.4589
280 244326088
283 14352.7713
276 5056.4896
277 6107.082
282 35944.1562
283 714.7043
275 6122.082
283 8128.7876

Figure 9. Because the table used for this pivot includes SalesOrderID, the
result has one row per sales order, rather than just one per salesperson.

[2014]))

But wait, there’s more

In my next article, I'll look at how you can pivot
when you don’t know the list of values in the pivot
column, as well as at the UNPIVOT command that
gives you an easy way to normalize non-normal-
ized data.

Total2012 Total2013 Total2014 Author PrOfile

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL
NULL

Tamar E. Granor, Ph.D. is the owner of Tomor-
row’s Solutions, LLC. She has developed and
enhanced numerous Visual FoxPro applications
for businesses and other organizations. Tamar is
author or co-author of a dozen books including the
award winning Hacker’s Guide to Visual FoxPro,
Microsoft Office Automation with Visual FoxPro
and Taming Visual FoxPro’s SQL. Her latest col-
laboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com.
Her other books are available from Hentzenwerke
Publishing (www.hentzenwerke.com). Tamar was
a Microsoft Support Most Valuable Professional
from the program's inception in 1993 until 2011.
She is one of the organizers of the annual South-
west Fox conference. In 2007, Tamar received the
Visual FoxPro Community Lifetime Achievement
Award. You can reach her at tamar@thegranors.
com or through www.tomorrowssolutionsllc.com.

