
Page 10 FoxRockX November 2014

One-Step Insert and Update
SQL Server provides a way to update some records, while inserting or even deleting 
others, with a single command.

Tamar E. Granor, Ph.D.

This series of articles looks at features of SQL Serv-
er’s T-SQL that make tasks easier than they are with 
VFP’s SQL sub-language. This time, we look at the 
MERGE command that lets you process complex 
updates with a single statement.
One of the questions I often see in VFP forums 
is how to update some records in a table while 
inserting others. The typical situation is that there’s 
a second table of new and updated information and 
the goal is to update the records that already exist 
and add those that don’t. 

You can do this in VFP, but you can’t do it with 
a single command. SQL Server 2008 and later, how-
ever, has a command that handles not only this task 
(sometimes called “upsert”), but a variety of simi-
lar tasks.

To explore this problem, we’re going to con-
sider a table of tax rates. For the SQL Server exam-
ples, we’ll use a copy of the SalesTaxRate table in 
the AdventureWorks 2008 database. For the VFP 
examples, we’ll create a simplified version of the 
same table to work on. Figure 1 shows the fields 
we’ll look at and some of the data.

We’ll also have a second table (or cursor) con-
taining the new tax rates, as in Figure 2. The prob-
lem then is to update the TaxRate column in the 
original table for any items that already exist and 
add a new record for any that don’t. Partial results 
are shown in Figure 3. 

Before jumping into solutions, it’s probably 
worth pointing out that in a real application, you’d 
probably track tax rates with dates they apply. In 
that case, you’d add a new record every time a 
tax rate changes and not modify or delete existing 
records. But we’ll ignore that reality for demonstra-
tion purposes.

Upsert with VFP
In VFP, this is a two-step process. You can’t update 
and insert records in a single command. So we use 
UPDATE first to update the records that exist and 
then use INSERT to add the new ones. Listing 1 
shows the code; the complete code, including that 
to create the two cursors is included in this month’s 
downloads as UpdateInsert.PRG.

Listing 1. In VFP, you can’t “upsert” in a single command.
* First update existing records
UPDATE TaxRates ;
  SET TaxRate = NewRates.TaxRate ;
  from NewRates ;
  WHERE TaxRates.StateProvinceID = ;
        NewRates.StateProvinceID ;
    AND TaxRates.TaxType = NewRates.TaxType
    

Figure 1. To demonstrate "upserts," we’ll make changes to 
this sales tax date.

Figure 2. A similarly-structured table shows the new data for 
some records.

Figure 3. After adding the two new taxes and updating the oth-
ers, the results include these records.



November 2014 FoxRockX Page 11

* Next insert new records
INSERT INTO TaxRates ;
  SELECT * ;
    FROM NewRates ;
    WHERE NOT exists (;
      SELECT * ;
        FROM TaxRates TR2 ;
        WHERE TR2.StateProvinceID = ;
              NewRates.StateProvinceID ;
          AND TR2.TaxType = NewRates.TaxType)

The UPDATE command is fairly straightfor-
ward. It matches records in the two tables (cur-
sors) based on StateProvinceID and TaxType. If the 
record exists in both tables, the TaxRate from the 
NewRates table replaces the one in TaxRates.

The INSERT is a little more complex because 
we need to figure out which records to insert. The 
SELECT looks for records in NewRates that have 
no match in TaxRates, based on StateProvinceID 
and TaxType. Those records are then inserted into 
TaxRates. 

Upsert with SQL Server
SQL Server offers a way to handle this problem 
in a single command. MERGE lets you synchro-
nize data from two tables. You specify the target 
table (into which the data is merged), the source 
table (from which data is drawn), the relationship 
between the tables (that is, the join conditions) and 
what to do in each of several cases.

Upsert, as in the example here, is the simplest 
form of MERGE. Listing 2 shows the T-SQL code 
equivalent to Listing 1; full code, including creat-
ing and populating the two tables, is included in 
this month’s downloads as MergeUpdateInsert.
SQL. Note that MERGE must be terminated with 
a semi-colon.

Listing 2. In T-SQL, you can specify the update and the insert 
in one MERGE command.
MERGE INTO #TaxRates TR
  USING #NewRates NR
  ON TR.StateProvinceID = NR.StateProvinceID
  AND TR.TaxType = NR.TaxType
  WHEN MATCHED THEN
    UPDATE SET TaxRate = NR.TaxRate
  WHEN NOT MATCHED THEN 
    INSERT (StateProvinceID, TaxType, 
            TaxRate, NAME )
      VALUES (NR.StateProvinceID, NR.TaxType, 
              NR.TaxRate, NR.NAME );

Here, INTO indicates that #TaxRates (with alias 
TR) is the target table, the one we want to update. 
USING says that #NewRates (with alias NR) is 
the source table, the one that contains the new 
data. The ON clause specifies the join condition; 
as in the VFP example, we match records based on 
StateProvinceID and TaxType.

The interesting part here is the series of WHEN 
clauses. WHEN MATCHED indicates what to do 
when we find a matching record. In this case, we 

use UPDATE to change the tax rate. WHEN NOT 
MATCHED says what to do when there’s no match-
ing record. In this case, we INSERT one. 

Note the variant format of both the UPDATE 
and INSERT commands here. We omit both the 
name of the table to operate on and the WHERE 
clause that indicates how to match records, because 
we’ve already specified them.

Also, be aware that the ON clause in MERGE 
doesn’t filter out any records from the source; it 
just determines which case a record falls into. That 
is, every record from the source table will be pro-
cessed. You might expect that the query in List-
ing 3 (called MergeUpdateFilterInOn.SQL in this 
month’s downloads) would let you process only 
the sales tax items, that is, those with TaxType = 1. 

Listing 3. This query looks like it would update or insert only 
the items with TaxType=1, but it creates records it shouldn’t.
MERGE INTO #TaxRates TR
  using #NewRates NR
  ON TR.StateProvinceID = NR.StateProvinceID
  AND TR.TaxType = NR.TaxType
  AND TR.TaxType = 1
  WHEN MATCHED THEN
    UPDATE SET TaxRate = NR.TaxRate
  WHEN NOT MATCHED THEN 
    INSERT (StateProvinceID, TaxType, 
            TaxRate, NAME )
      VALUES (NR.StateProvinceID, NR.TaxType, 
              NR.TaxRate, NR.NAME );

However, as Figure 4 shows, it adds new rows 
for the records in #NewRates with TaxType set to 
2 or 3. Why does it behave this way? Because the 
condition in the ON clause is used only to sort the 
records into “matches” and “doesn’t match.” So, 
the records where TaxType is 2 or 3 get sorted into 
the “doesn’t match” bucket, and new records are 
added. The next section of this paper shows how 
to have more choices than just “matches” and 
“doesn’t match,” but for a case like this one, there’s 
actually an even easier solution.

To process only some records from the source 
table, use a CTE before the MERGE command. List-
ing 4 (MergeUpdateFilterCTE.SQL in this month’s 
downloads) shows how to use a CTE to process 
only the sales tax records.

Figure 4. The flawed query in Listing 3 adds new rows for the 
records with TaxType something other than 1, rather than ignor-
ing them.



Page 12 FoxRockX November 2014

Listing 4. When you want to process only some of the records 
in the source table, use a CTE to select those records before 
the MERGE command.
WITH csrSalesTaxOnly 
  (StateProvinceID ,TaxType ,TaxRate ,NAME) 
AS 
  (SELECT * FROM #NewRates WHERE TaxType = 1)
      
MERGE INTO #TaxRates TR
  using csrSalesTaxOnly NR
  ON TR.StateProvinceID = NR.StateProvinceID
  AND TR.TaxType = NR.TaxType
  WHEN MATCHED THEN
    UPDATE SET TaxRate = NR.TaxRate
  WHEN NOT MATCHED THEN 
    INSERT (StateProvinceID, TaxType, 
            TaxRate, NAME )
      VALUES (NR.StateProvinceID, NR.TaxType, 
              NR.TaxRate, NR.NAME );

You might also use a CTE to do some aggre-
gation before the MERGE. For example, say you’re 
tracking the maximum monthly sales for a group 
of products. If the new data shows individual sales 
for the month, you might compute the totals by 
product in a CTE and then use MERGE to update 
those already there while adding products not pre-
viously tracked.

The MERGE command can actually do more 
than simple upsert. In some cases, you can DELETE 
rather than UPDATE or INSERT. In addition, you 
can test for more than the simple “does it match a 
record or not?”

Filtering matches
You can add a filter condition in WHEN MATCHED 
so that the action applies to only some of the 
matched records. This provides an alternative solu-
tion to the problem of filtering out some source 
records. Listing 5 shows how to use this approach 
to change only those records representing sales tax.
Listing 5. Another way to handle filtering of some source rows 
is to put the filter condition in the WHEN MATCHED clause.
MERGE INTO #TaxRates TR
  using #NewRates NR
  ON TR.StateProvinceID = NR.StateProvinceID
  AND TR.TaxType = NR.TaxType
  WHEN MATCHED AND TR.TaxType = 1 THEN
    UPDATE SET TaxRate = NR.TaxRate
  WHEN NOT MATCHED AND NR.TaxType = 1 THEN 
    INSERT (StateProvinceID, TaxType, 
            TaxRate, NAME )
      VALUES (NR.StateProvinceID, NR.TaxType, 
              NR.TaxRate, NR.NAME );

In fact, MERGE supports up to two WHEN 
MATCHED cases; when there are two, the first 
must add an additional condition. That is, we can 
say “If we find a matching record and this condi-
tion is true, do this, but if we find a matching record 
and this condition is not true, do that.” 

We can modify the earlier example so that if a 
tax rate is updated to be 0, we delete the record. 
Listing 6 shows the modified MERGE command. 
(MergeUpdateDelete.SQL in this month’s down-
loads contains the complete program.)

Listing 6. You can have two WHEN MATCHED clauses, one 
with a condition and one without. Here, the first is used to de-
lete tax rates that have become zero.
MERGE INTO #TaxRates TR
  USING #NewRates NR
  ON TR.StateProvinceID = NR.StateProvinceID
  AND TR.TaxType = NR.TaxType
  WHEN MATCHED AND NR.TaxRate = 0 THEN
    DELETE
  WHEN MATCHED THEN
    UPDATE SET TaxRate = NR.TaxRate
  WHEN NOT MATCHED THEN 
    INSERT (StateProvinceID, TaxType, 
            TaxRate, NAME )
      VALUES (NR.StateProvinceID, NR.TaxType, 
              NR.TaxRate, NR.NAME );

The command here is identical to that one in 
Listing 2, except for the first WHEN MATCHED 
clause. That one checks whether the new tax rate is 
0, and if so, deletes the record. 

We can do something similar with VFP, but 
doing the exact same thing is actually tricky. The 
similar thing is to simply add a DELETE command 
at the end of Listing 1 that removes any record with 
a tax rate of 0. However, the T-SQL command in 
Listing 2 allows you to insert a record with a 0 tax 
rate and doesn’t delete it. To do that in VFP, you 
have to play with the DELETED setting, so that 
you can delete an existing record without adding 
it back. (Presumably, of course, you don’t actually 
want to add 0 tax rate records at all, so the VFP ver-
sion would be more accurate. You can accomplish 
the same thing in T-SQL by removing those records 
from the source cursor before the MERGE com-
mand.)

Unmatched target records
The WHEN NOT MATCHED clause refers to 
records in the source for which there’s no match 
in the target. In fact, you can add the optional BY 
TARGET clause to clarify, as in Listing 7.

Listing 7. WHEN NOT MATCHED is equivalent to WHEN NOT 
MATCHED BY TARGET
MERGE INTO #TaxRates TR
  USING #NewRates NR
  ON TR.StateProvinceID = NR.StateProvinceID
  AND TR.TaxType = NR.TaxType
  WHEN MATCHED THEN
    UPDATE SET TaxRate = NR.TaxRate
  WHEN NOT MATCHED BY TARGET THEN 
    INSERT (StateProvinceID, TaxType, 
            TaxRate, NAME )
      VALUES (NR.StateProvinceID, NR.TaxType, 
              NR.TaxRate, NR.NAME );

You can also include a case for when a record 
appears in the target table, but isn’t matched in the 
source table. For the example we’ve been looking at, 
that isn’t useful, since we specified that the source 
table contains only changed records. But suppose 
instead a complete list of current sales tax values 
is provided annually, and the task is to update the 
built-in sales tax table. In that case, we want to do 
three things:



November 2014 FoxRockX Page 13

Update records that already exist;
• Add new records to the master table;
• Remove records from the master table 

that aren’t in the new list.

The WHEN NOT MATCHED BY SOURCE 
clause makes that possible. It lets you specify 
what to do with items in the target table that 
aren’t in the source table. Listing 8 shows code 
that implements the strategy above. The complete 
example, included in this month’s downloads as 
MergeUpdateDeleteBySource.SQL, takes a new 
approach to creating the #NewRates table of new 
tax rates; it copies the existing table and then makes 
a series of changes to represent a complete list of 
current tax rates.

Listing 8. In some cases, you want to take action when there’s 
a record in the target that has no match in the source. Here, 
such records are deleted.
MERGE INTO #TaxRates TR
  USING #NewRates NR
  ON TR.StateProvinceID = NR.StateProvinceID
  AND TR.TaxType = NR.TaxType
  WHEN MATCHED AND NR.TaxRate = 0 THEN
    DELETE
  WHEN MATCHED THEN
    UPDATE SET TaxRate = NR.TaxRate
  WHEN NOT MATCHED BY TARGET THEN 
    INSERT (StateProvinceID, TaxType, 
            TaxRate, NAME )
      VALUES (NR.StateProvinceID, NR.TaxType,
              NR.TaxRate, NR.NAME )
  WHEN NOT MATCHED BY SOURCE THEN 
    DELETE;

Of course, in this case, you might simply delete 
all records in the existing table and replace them 
with the contents of the new table. For this example, 
with just a handful of records, that’s probably not a 
bad choice. But in a production application, where 
the source and target tables might have thousands 
or even millions of records, simply making the 
necessary changes seems far more efficient.

What did I do?
MERGE has an optional OUTPUT clause that 
lets you see exactly what it did. When you use it, 
MERGE returns one row for each row updated, 
inserted or deleted by the command. You can use 
the special $action identifier to include the action 
taken on each affected row, as well as the special 
Inserted and Deleted tables. 

For example, Listing 9 (included in this month’s 
downloads as MergeUpdateInsertOutput.SQL) 
shows the query in Listing 2 with an OUTPUT 
clause. In this case, we show the action taken on the 
row, any values inserted and any deleted. Figure 5  
shows the result.

Listing 9. Use the OUTPUT clause to see what MERGE actu-
ally did.
MERGE INTO #TaxRates TR
  using #NewRates NR
  ON TR.StateProvinceID = NR.StateProvinceID
  AND TR.TaxType = NR.TaxType
  WHEN MATCHED THEN
    UPDATE SET TaxRate = NR.TaxRate
  WHEN NOT MATCHED THEN 
    INSERT (StateProvinceID, TaxType, 
            TaxRate, NAME )
      VALUES (NR.StateProvinceID, NR.TaxType, 
              NR.TaxRate, NR.NAME )
  OUTPUT $ACTION, INSERTED.*, DELETED.*;

Final thoughts
MERGE provides an elegant solution to a common 
problem—the need to update some records, add 
others and delete yet others. But like any complex 
command, using it correctly requires some practice.

Before closing, I must add that there are some 
known issues with MERGE. Before committing to 
using MERGE, you may want to review this arti-
cle by longtime SQL Server MVP Aaron Bertrand: 
http://tinyurl.com/mtq2kfx. 

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s 
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other 
organizations. Tamar is author or co-author of a dozen 
books including the award winning Hacker’s Guide to 
Visual FoxPro, Microsoft Office Automation with Visual 
FoxPro and Taming Visual FoxPro’s SQL. Her latest 
collaboration is VFPX: Open Source Treasure for the 
VFP Developer, available at www.foxrockx.com. Her 
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft 
Support Most Valuable Professional from the program's 
inception in 1993 until 2011. She is one of the organizers 
of the annual Southwest Fox conference. In 2007, Tamar 
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

Figure 5. The OUTPUT clause in Listing 9 shows that two rows were inserted and four were modified.


