
November, 1999 

Advisor Answers 

Multiple Detail Band Reports 

Visual FoxPro 6.0, 5.0, 3.0 and FoxPro 2.x 

Q: I have a parent, child, child, child set of tables. The three child tables are all related 
to the parent, but do not relate to each other. I need to replace a hand-coded 

FoxPro/DOS report in Visual FoxPro (either 5.0 or 6.0). This report has the parent's 
information at the top, then the first child's records, then the second child's records and 

so forth. 

This is an insurance program that prints all policy header information first, then all 

location information, then all the coverage detail, then all of the various addresses last. I 
need to somehow figure out how to finish the header info first, then SCAN and print all 

location records, then SCAN and print all coverage records, then SCAN and print all 
address information. 

What I feel I need is a "Group Header" and a "Detail" set of lines for each different table. 
Can I get there from here, or do I have to tell my customer that it can't be done? 

Actually, I can do this by pre-processing, but really don't want to do that. Are there any 

other options? 

—Dan Farnham (via Advisor.COM) 

A: You have what I like to refer to as the "multiple unrelated siblings" challenge (it's a 
90's kind of thing). I first addressed this problem in FoxPro 2.0 in the October 1993 

issue of FoxPro Advisor. While the basic approach hasn't changed since, the specifics 
have, so it's worth looking at it again. (Also, note that Gary Zaika published an 

alternative approach in the July '95 issue.) 

By design, the Report Designer can't handle multiple detail bands. But FoxPro's design 

has never stopped us from doing what we want. We can trick the RD into producing 
what look like multiple detail bands. However, you can't do it without doing some work 

up front. Since I almost always use queries (or views) to prepare the data for a report, I 
don't consider this a problem.  

I'll use the TasTrade example data that comes with VFP to demonstrate. Suppose you 
want to create a "customer profile" report. The report shows, for each customer, a list of 

all employees with whom the customer has placed an order, and a list of all the products 

the customer has ever ordered. For each, the total of the orders is shown. Figure 1 
shows the first page of the report. (This is a simplified version. In a real application, the 

report would probably include a lot of other information, especially about the customer.) 



 

Figure 1 Customer Profile Report–The first "detail band" lists all the employees this customer has 
ordered from. The second shows all the products the customer has ordered. 

So what's behind the smoke and mirrors? There are two parts: the query that assembles 

the data and the report that displays the query result.  

The query is really one query for each of the child tables consolidated into a single result 
using the UNION clause. In the process, we add a field that tells which child table the 

particular record comes from. Here's a VFP 5 or 6 version of the query for the customer 
profile report. (In VFP 3 or FP 2.x, you need to use the WHERE clause for the join 

conditions rather than the JOIN clause.) 

SELECT Customer.Customer_Id, Company_Name, ; 
  PADR(TRIM(Last_Name) + ", " + First_Name, 40) AS cName, ; 
  SPACE(50) AS cEngName, ; 
  SUM(Quantity * Unit_Price) AS nTotal, ; 
  "E" AS cType ; 
 FROM Customer ; 
   JOIN Orders ; 
     JOIN Order_Line_Items ; 
       ON Orders.Order_ID = Order_Line_Items.Order_ID ; 
     ON Customer.Customer_ID = Orders.Customer_ID ; 
     JOIN Employee ; 
      ON Orders.Employee_ID = Employee.Employee_ID ; 
 GROUP BY 1, 2, 3 ; 
UNION ALL ;         
SELECT Customer.Customer_ID, Customer.Company_Name, ; 
  Products.Product_Name AS cName, ; 
  Products.English_Name AS cEngName, ; 
  SUM(Quantity * Order_Line_Items.Unit_Price) AS nTotal, ; 



  "P" AS cType ; 
 FROM Customer ; 
   JOIN Orders ; 
     JOIN Order_Line_Items ; 
       JOIN Products ; 
       ON Order_Line_Items.Product_ID = Products.Product_ID ; 
     ON Orders.Order_ID = Order_Line_Items.Order_ID ; 
   ON Customer.Customer_ID = Orders.Customer_ID ; 
 GROUP BY 1, 2, 3 ; 
 ORDER BY 2, 6, 3 ; 
 INTO CURSOR CustomerProfile 

As with any query involving the UNION clause, the field lists of the individual queries 

must contain the same number of items and corresponding items must be of the same 
data type and size. That's why the first query (the Employees query) includes the line: 

SPACE(50) AS cEngName 

That field is a placeholder for the English_Name field in the Products query. 

The cType field in the two queries tells us where a particular record originated. It's "E" 

for an employee record and "P" for a product record.  

The ORDER BY clause, which applies to the overall result of a UNIONed query, sorts the 

records by customer, then by cType ("E" or "P"), then by the cName field (which is 
either employee name or product name). So, after the query, the cursor is in exactly the 

order we want for the report. Figure 2 shows a little of the data. 

 

Figure 2 Collecting Customer Profile information–A UNIONed query lets us consolidate data from 
multiple unrelated siblings into a single cursor for reporting. The cType field indicates the original 
source. 

Now we're ready to create the report. The secret to "multiple detail bands" is using an 

extra level of grouping based on the cType field. To make the appropriate group headers 

and footers, use a combination of IIF() and Print When conditions. (FoxPro/DOS didn't 
have Print When, so IIF() was the only tool available for this part.)  Figure 3 shows the 

Customer Profile report in the Report Designer. 



 

Figure 3 Designing "Multiple Detail Bands"–The cType Group provides the extra level of looping needed 
to report on each child separately. IIF() is used in the group header to change the heading for each child. 
Since the cursor used for the report is also ordered by this field (within customer), all of the employee 
information and all of the product information appears together for each customer. Otherwise, you could 
see multiple employee and product headings for each customer. 

The first expression in the cType group header is: 

IIF(cType = "E","Employee Information", ; 
    "Product Information") 

The others are similar. The cEngName field uses Print When's Remove Line if Blank 
option. In other cases, other Print When options may be useful. You'll find the query and 

the report on this month's PRD. 

This approach works best when the list of fields is similar, that is, when the various 

"detail bands" look more or less alike in structure. When the child tables are wildly 

different, you can use lots of dummy fields and Print When's or try another approach, 
such as the one in Zaika's article. 

—Tamar 


