November, 1999

Advisor Answers

Multiple Detail Band Reports

Visual FoxPro 6.0, 5.0, 3.0 and FoxPro 2.x

Q: I have a parent, child, child, child set of tables. The three child tables are all related
to the parent, but do not relate to each other. I need to replace a hand-coded
FoxPro/DOS report in Visual FoxPro (either 5.0 or 6.0). This report has the parent's
information at the top, then the first child's records, then the second child's records and
so forth.

This is an insurance program that prints all policy header information first, then all
location information, then all the coverage detail, then all of the various addresses last. I
need to somehow figure out how to finish the header info first, then SCAN and print all
location records, then SCAN and print all coverage records, then SCAN and print all
address information.

What I feel I need is a "Group Header" and a "Detail" set of lines for each different table.
Can I get there from here, or do I have to tell my customer that it can't be done?
Actually, I can do this by pre-processing, but really don't want to do that. Are there any
other options?

—Dan Farnham (via Advisor.COM)

A: You have what I like to refer to as the "multiple unrelated siblings" challenge (it's a
90's kind of thing). I first addressed this problem in FoxPro 2.0 in the October 1993
issue of FoxPro Advisor. While the basic approach hasn't changed since, the specifics
have, so it's worth looking at it again. (Also, note that Gary Zaika published an
alternative approach in the July '95 issue.)

By design, the Report Designer can't handle multiple detail bands. But FoxPro's design
has never stopped us from doing what we want. We can trick the RD into producing
what look like multiple detail bands. However, you can't do it without doing some work
up front. Since I almost always use queries (or views) to prepare the data for a report, I
don't consider this a problem.

I'll use the TasTrade example data that comes with VFP to demonstrate. Suppose you
want to create a "customer profile" report. The report shows, for each customer, a list of
all employees with whom the customer has placed an order, and a list of all the products
the customer has ever ordered. For each, the total of the orders is shown. Figure 1
shows the first page of the report. (This is a simplified version. In a real application, the
report would probably include a lot of other information, especially about the customer.)

Tasmanian Traders
Customer Profile Report

ALFKI Alfreds Futterkiste

Employee Information

Employee Total Orders
Erid, Justin 4536.6000
Total 45366000
Product Information
Produet Total Orders
Anisesd Syrup 50.0000
Licarice Syrup
Chartreuse verte 378.0000
Green Charrause (Liqueur;
Chef Anton's Gumbo Mix 1192000
Chef Antan's Gumbo Mix
Grandma's Boysenbearry Spread 400.0000
Grandma's Boysenbery Spread
Lakkalikaar 270.0000
Claudbermy Liqueur
Manjimup Dried Apples 4452000
Manjimup Dried Apples
Qriginal Frankfurter griine Sola 26.0000
Original Frankfurter Green Sauce
Pate chingis 336.0000
Shepard's Pie
Raclette Courdavault 825.0000
Caurdavault Raclette Cheese
Rssle Sauerkraut 7752000
Rossle Sauerkraut
Spegesild 24.0000
Falt Heming
Vegie-spread 8760000

Wegetable Sandwich Spread
Total 4536 6000

Figure 1 Customer Profile Report-The first "detail band" lists all the employees this customer has
ordered from. The second shows all the products the customer has ordered.

So what's behind the smoke and mirrors? There are two parts: the query that assembles
the data and the report that displays the query result.

The query is really one query for each of the child tables consolidated into a single result
using the UNION clause. In the process, we add a field that tells which child table the
particular record comes from. Here's a VFP 5 or 6 version of the query for the customer
profile report. (In VFP 3 or FP 2.x, you need to use the WHERE clause for the join
conditions rather than the JOIN clause.)

SELECT Customer.Customer_Id, Company_Name, ;
PADR(TRIM(Last_Name) + ", " + First_Name, 40) AS cName, ;
SPACE(50) AS cEngName, ;

SUM(Quantity * Unit_Price) AS nTotal, ;
"E" AS cType ;
FROM Customer ;
JOIN Orders ;
JOIN Order_Line_Items ;
ON Orders.Order_ID = Order_Line_Items.Order_ID ;
ON Customer.Customer_ID = Orders.Customer_ID ;
JOIN Employee ;
ON Orders.Employee_ID = Employee.Employee_ ID ;
GROUP BY 1, 2, 3 ;

UNION ALL ;

SELECT Customer.Customer_ID, Customer.Company_Name, ;
Products.Product_Name AS cName, ;

Products.English_Name AS cEngName, ;
SUM(Quantity * Order_Line_Items.Unit Price) AS nTotal, ;

"P" AS cType ;
FROM Customer ;
JOIN Orders ;
JOIN Order_Line_Items ;
JOIN Products ;
ON Order_Line_Items.Product ID = Products.Product_ID ;
ON Orders.Order_ID = Order_Line_Items.Order_ID ;
ON Customer.Customer_ID = Orders.Customer_ID ;
GROUP BY 1, 2, 3 ;
ORDER BY 2, 6, 3 ;
INTO CURSOR CustomerProfile

As with any query involving the UNION clause, the field lists of the individual queries
must contain the same number of items and corresponding items must be of the same
data type and size. That's why the first query (the Employees query) includes the line:

SPACE(50) AS cEngName
That field is a placeholder for the English_Name field in the Products query.

The cType field in the two queries tells us where a particular record originated. It's "E"
for an employee record and "P" for a product record.

The ORDER BY clause, which applies to the overall result of a UNIONed query, sorts the
records by customer, then by cType ("E" or "P"), then by the cName field (which is
either employee name or product name). So, after the query, the cursor is in exactly the
order we want for the report. Figure 2 shows a little of the data.

 Customerprofile = B3

Customer_id Company_name Cname C Ntotal Ctype|+|
ALFKI Allreds Fulterkiste Brid, Justin 400 E
ALFKI Alireds Fulterkiste Aniseed Syrup Licorice Syup 600000 P
ALFKI Alfreds Futerkiste Chartieuse verte Green Chartreuse (Ligue 3780000 F
ALFKI Alfreds Futerkists Chef Anton's Gumbo Mix__ Chef Anton's Gurmbo Mix 1192000 P
ALFKI ‘Alireds Fullerkiste Grandma's Boysenberry Sg Grandma's Boysenbe: 4000000 F
ALFKI Alireds Fulterkiste Lakdkalikir Cloudbey Ligueur 2700000 P
ALFKI Alfreds Futerkiste Manjimup Dried Apples Manjimug Dried Apples 4452000 F
ALFKI Alfreds Futerkists Original Frankiurer griine S¢ Original Frankfurer Gres 26,0000 P
ALFKI ‘Alireds Fullerkiste Paié chinois Shepard's Pie 360000 F
ALFKI Alireds Fulterkiste Raclatie Courdavault Courdavault Racletie Ch 8250000 P
ALFKI Alfreds Futerkiste Rossle Réssle 7752000 F
ALFKI Alfreds Futerkists Spegesild SaltHerring 240000 P
ALFKI ‘Alireds Fullerkiste Wegie-spread “egetalle Sancwich Sp 78,0000 F
o [ANATR Ana Trujillo E os v {King, Robert 1402.95001 €
ANATR Ans Trjills Emparedados y | C Pierat Piermot C 3400000 F
ANATR Ana Trujilo Ei asy G ost G Cheese 288000/ P
ANATR ‘Ana Trujilin Empearedadas v | Konbu Kelp Seaweed 500000 P
A TR dna Truiilln Franaradsadne i hdaccamona Fakigl hacrarmona Fahinli A2000N0N0E R -
[1 P

Figure 2 Collecting Customer Profile information-A UNIONed query lets us consolidate data from
multiple unrelated siblings into a single cursor for reporting. The cType field indicates the original
source.

Now we're ready to create the report. The secret to "multiple detail bands" is using an
extra level of grouping based on the cType field. To make the appropriate group headers
and footers, use a combination of IIF() and Print When conditions. (FoxPro/DOS didn't
have Print When, so IIF() was the only tool available for this part.) Figure 3 shows the
Customer Profile report in the Report Designer.

i Report Designer - customerprofile frx
VR T Y O Y O Y I I I] I I] I I

0 .
Tasmanian Traders

Customer Profile Report

4 Page Header

o lcuston] |company name

- Group Header 1:customer_id
IIF(cType = "E","Employee Infd
lIF{cType = "E"." Total Orders

A Group Header 2:ctype
”i cname. | Intotal |

[cengname. |

4 Detail
0

Total ntotal

4 Group Footer 2:ctype:
a Group Footer 1 customer_id

]

4 Page Footer

Figure 3 Designing "Multiple Detail Bands"-The cType Group provides the extra level of looping needed
to report on each child separately. IIF() is used in the group header to change the heading for each child.
Since the cursor used for the report is also ordered by this field (within customer), all of the employee
information and all of the product information appears together for each customer. Otherwise, you could
see multiple employee and product headings for each customer.

The first expression in the cType group header is:

IIF(cType = "E","Employee Information", ;
"Product Information")

The others are similar. The cEngName field uses Print When's Remove Line if Blank
option. In other cases, other Print When options may be useful. You'll find the query and
the report on this month's PRD.

This approach works best when the list of fields is similar, that is, when the various
"detail bands" look more or less alike in structure. When the child tables are wildly
different, you can use lots of dummy fields and Print When's or try another approach,
such as the one in Zaika's article.

—Tamar

