More on OVER

The OVER keyword lets you compute group totals, running totals and more.

Tamar E. Granor, Ph.D.

In the May, 2014 issue, I showed how the OVER
keyword lets you find the top N in a group. This
month, we’ll look at some other ways to use OVER
to simplify calculations.

My previous article showed how to use OVER
with the various ranking functions (such as RANK
and RECORD_NUMBER) to assign each record
in a result set a rank. But OVER can also be used
with the aggregate functions: COUNT, SUM, AVG,
MIN, MAX and so forth. In addition, in SQL Server
2012 and later, there’s also a set of analytic func-
tions that work with OVER. In this article, I'll look
at the aggregate functions, plus an additional way
to specify which records are used by the function.

A quick review

The OVER keyword lets you order data and apply
a function to the records in that order. You can also
divide (PARTITION) your data into groups and
apply a specified function to the records in each
group. For example, the query in Listing 1 numbers
employees in the order in which they joined their
current department.

Listing 1. OVER lets you put records in order and divide them
into groups, then apply a function to each record.

SELECT FirstName, LastName, StartDate,
Department.Name,
RANK () OVER
(PARTITION BY Department.DepartmentID
ORDER BY StartDate)
AS EmployeeRank
FROM HumanResources.Employee
JOIN HumanResources.EmployeeDepartmentHistory
ON Employee.BusinessEntityID =
EmployeeDepartmentHistory.BusinessEntityID
JOIN HumanResources.Department
ON EmployeeDepartmentHistory.DepartmentID =
Department.DepartmentID
JOIN Person.Person
ON Employee.BusinessEntityID =
Person.BusinessEntityID
WHERE EndDate IS null

Aggregating with OVER

The aggregate functions are usually used in con-
junction with GROUP BY to compute things like
total sales for each salesperson each year, or the
number of days each student has been absent each
semester. At first glance, it would appear that using
aggregate functions with OVER would do the same
thing, but there are some important differences.

Page 6 FoxRockX

First, using OVER, you can aggregate on differ-
ent groups within a single query. For example, the
query in Listing 2 computes the yearly, monthly and
daily number sold for each product; Figure 1 shows
a portion of the results when the query is run against
the AdventureWorks 2014 example database. The
results show the other significant difference between
aggregating by GROUP BY and aggregating by
OVER. With GROUP BY, you end up with a single
record for each group. With OVER, you get what-
ever records the JOIN and WHERE clauses give you,
but they contain aggregated results.

Listing 2. OVER can be combined with the aggregate functions
to let you aggregate by different groups in a single query.

SELECT Orderdate, ProductlID,
SUM (sod.ordergty) OVER
(PARTITION BY sod.productID,
YEAR (orderdate)) AS Yearly,
SUM (sod.ordergty) OVER
(PARTITION BY sod.productID,
YEAR (orderdate), MONTH (orderdate))
AS Monthly,
SUM (sod.ordergty) OVER
(PARTITION BY sod.productID,
orderdate) AS Daily
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON soh.SalesOrderID = sod.SalesOrderID
ORDER BY ProductID, OrderDate

Orderdate ProductD Yearly Monthly Daily
2014-05-19 00:00:00.000 998 580 127
2014-05-19 00:00:00.000 998 580 127 2
2014-05-20 00:00:00.000 998 580 127 1
2014-05-21 00:00:00.000 998 580 127 2
2014-05-21 00:00:00.000 998 580 127 2
2014-05-26 00:00:00.000 998 580 127 1
2014-05-27 00:00:00.000 998 580 127 2
2014-05-27 00:00:00.000 998 580 127 2
2014-05-28 00:00:00.000 998 580 127 1
2014-05-29 00:00:00.000 998 580 127 1
2014-05-30 00:00:00.000 998 580 127 1
2013-05-30 00:00:00.000 999 826 98 97
2013-05-30 00:00:00.000 999 826 98 97
2013-05-30 00:00:00.000 999 826 98 97
2013-05-30 00:00:00.000 999 826 98 97

Figure 1. When you use OVER for aggregation, you
get all the records you’d get without it.

In this example, if you want to see just one
record for each date, add DISTINCT to the query,
asin Listing 3 (included in this month’s downloads
as SalesByYearMonthDay.sql). Figure 2 shows par-
tial results.

March 2015

Listing 3. Adding DISTINCT to the query gives us one record
per date, but still includes yearly, monthly and daily totals.

SELECT DISTINCT Orderdate, ProductID,
SUM (sod.ordergty) OVER
(PARTITION BY sod.productID,
YEAR (orderdate)) AS Yearly,
SUM (sod.ordergty) OVER
(PARTITION BY sod.productID,
YEAR (orderdate), MONTH (orderdate))
AS Monthly,
SUM (sod.ordergty) OVER
(PARTITION BY sod.productID,
orderdate) AS Daily
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON soh.SalesOrderID = sod.SalesOrderID
ORDER BY ProductID, OrderDate

Orderdate ProductlD Yearly Monthly Daily
2014-05-19 00:00:00.000 998 580 127 2
2014-05-20 00:00:00.000 998 580 127 1
2014-05-21 00:00:00.000 998 580 127 2
2014-05-26 00:00:00.000 998 580 127 1
2014-05-27 00:00:00.000 998 580 127 2
2014-05-28 00:00:00.000 998 580 127 1
2014-05-29 00:00:00.000 998 580 127 1
2014-05-30 00:00:00.000 998 580 127 1
2013-05-30 00:00:00.000 999 826 98 97
2013-05-31 00:00:00.000 999 826 98 1
2013-06-02 00:00:00.000 999 826 17 1
2013-06-06 00:00:00.000 999 826 17 1
2013-06-07 00:00:00.000 999 826 17 1
2013-06-09 00:00:00.000 999 826 17 1
2013-06-10 00:00:00.000 999 826 17 1

Figure 2.The query in Listing 3 results in one record per date

Computing percentages

You can use OVER to compute what percent of a
total a particular record represents. Listing 4 builds
on the previous example to indicate what percent of
annual and monthly sales for the product a given
day’s sales represent. The number sold for the day
is divided by the number sold in the month or year;
that value is then multiplied by 100 and cast as a dec-
imal to show the percentage. Figure 3 shows partial
results. The query is included in this month’s down-
loads as SalesByYearMonthDayWithPcts.sql.

Listing 4. In this query, OVER is used with SUM() to figure out
what percent of a product’s monthly and yearly sales came on
a particular day.

SELECT DISTINCT Orderdate, ProductID,

SUM (sod.ordergty) OVER
(PARTITION BY sod.productID,

YEAR (orderdate)) AS Yearly,

SUM (sod.ordergty) OVER
(PARTITION BY sod.productID,

YEAR (orderdate), MONTH (orderdate))
AS Monthly,

SUM (sod.ordergty) OVER
(PARTITION BY sod.productID,
orderdate) AS Daily,

CAST (1. * SUM(OrderQty) OVER
(PARTITION BY sod.productID,
OrderDate) / SUM(sod.orderqgty) OVER
(PARTITION BY sod.productID,

YEAR (orderdate)) * 100
AS decimal (5,2)) AS PctOfYear,

CAST (1. * SUM(OrderQty) OVER
(PARTITION BY sod.productID,
orderdate) /SUM (sod.ordergty) OVER

March 2015

(PARTITION BY sod.productID,
YEAR (orderdate), Month (orderdate))
* 100 AS decimal (5,2)) AS PctOfMonth
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON soh.SalesOrderID = sod.SalesOrderID
ORDER BY OrderDate, ProductID

Orderdate Produc... Yea.. Mont.. Daily PctOfY.. PctOfMo...
707 331 24 24 725 100.00
2011-07-01 00:00:00.000 707 331 58 58 17.52 100.00
2011-08-01 00:00:00.000 707 331 96 55 16.62 57.29
2011-08-31 00:00:00.000 707 331 96 41 12.39 4271
2011-10-01 00:00:00.000 707 331 141 77 23.26 54.61
2011-10-31 00:00:00.000 707 331 141 64 19.34 45.39
2011-12-01 00:00:00.000 707 331 12 12 3.63 100.00
2012-01-01 00:00:00.000 707 1278 61 31 243 50.82
2012-01-29 00:00:00.000 707 1278 61 30 235 49.18
2012-02-29 00:00:00.000 707 1278 27 27 211 100.00
2012-03-30 00:00:00.000 707 1278 93 93 7.28 100.00
2012-04-30 00:00:00.000 707 1278 52 52 4.07 100.00
2012-05-30 00:00:00.000 707 1278 162 162 12.68 100.00
2012-06-30 00:00:00.000 707 1278 214 214 16.74 100.00
2012-07-31 00:00:00.000 707 1278 197 197 1541 100.00

Figure 3. You can use OVER to compute what percent of a
group total a particular value or subset represents. Here, the
day’s sales are computed as a percentage of the annual and
monthly sales for the product.

Running totals and moving

averages

Although I'm working with SQL Server 2014, you
can use OVER with aggregate functions all the
way back to SQL Server 2005. However, until SQL
Server 2012, you couldn’t include an ORDER clause
with OVER and an aggregate function; that use of
OVER was restricted to PARTITION.

The ability to include ORDER BY with OVER
and aggregate functions lets you compute running
totals and what are called moving averages. When
ORDER BY is included, the specified aggregate is
computed for all records in the group up to and
including the current record. Listing 5 (included
in this month’s downloads as RunningSalesBy-
Customer.sql) demonstrates; it computes daily,
monthly and yearly sales by customer and includes
running totals for the monthly and yearly sales.
Partial results are shown in Figure 4 look at the
rows for customer 11007 to see the monthly run-
ning total change.

Listing 5. You can add ORDER BY to an OVER clause using
an aggregate function to get a running total or moving average.

SELECT DISTINCT CustomerID, Orderdate,

SUM (sod.ordergty*sod.UnitPrice) OVER
(PARTITION BY CustomerID,

YEAR (orderdate)) AS Yearly,

SUM (sod.ordergty*sod.UnitPrice) OVER
(PARTITION BY CustomerID,

YEAR (orderdate), MONTH (orderdate))
AS Monthly,

SUM (sod.ordergty*sod.UnitPrice) OVER
(PARTITION BY CustomerID, orderdate)
AS Daily,

SUM (sod.ordergty*sod.UnitPrice) OVER
(PARTITION BY CustomerID,

YEAR (orderdate) ORDER BY orderdate)
AS YearlyRunning,

SUM (sod.ordergty*sod.UnitPrice) OVER

(PARTITION BY CustomerID,

FoxRockX Page 7

YEAR (orderdate), MONTH (orderdate)
ORDER BY orderdate)
AS MonthlyRunning
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON soh.SalesOrderID = sod.SalesOrderID
ORDER BY CustomerID, OrderDate

SUM (Subtotal) OVER
(PARTITION BY CustomerID,
YEAR (orderdate), MONTH (orderdate))
AS Monthly,
AVG (Subtotal) OVER
(PARTITION BY CustomerID,
YEAR (OrderDate) ORDER BY OrderDate)
AS RunningAvg
FROM Sales.SalesOrderHeader
ORDER BY CustomerID, OrderDate

CustomerlD Orderdate Yearly Monthly Daily

11005 2011-06-01 00:00:00.000 3374.99 3374.99 3374.99
11005 2013-06-25 00:00:00.000 4746.34 2362.27 2362.27
11005 2013-10-02 00:00:00.000 4746.34 2384.07 2384.07
11006 2011-06-26 00:00:00.000 3399.99 3399.99 3399.99
11006 2013-05-31 00:00:00.000 4719.04 2334.97 2334.97
11006 2013-10-14 00:00:00.000 4719.04 2384.07 2384.07
11007 2011-06-11 00:00:00.000 3399.99 3399.99 3399.99
11007 2013-06-23 00:00:00.000 4811.01 2391.95 2391.95
11007 2013-08-19 00:00:00.000 4811.01 2419.06 2419.06
11008 2011-06-27 00:00:00.000 3374.99 3374.99 3374.99
11008 2013-06-05 00:00:00.000 4731.32 231226 2312.26
11008 2013-08-02 00:00:00.000 4731.32 2419.06 2419.06
11009 2011-06-29 00:00:00.000 3374.99 3374.99 3374.99
11009 2013-06-22 00:00:00.000 4716.34 2297.28 2297.28
11009 2013-10-09 00:00:00.000 4716.34 2419.06 2419.06

YearlyRunning MonthlyRunning

Similarly, when you

3374.99 3374.99 use ORDER BY with
2362.27 2362.27 MIN() and MAX(), you
4746.34 2384.07 get the minimum or maxi-
3399.99 3399.99 mum value in the group
aaas. a7 2334.97 to this point. The query
4719.04 2384.07 in Listing 7 shows the
3399.99 S minimum and maximum
239195 2391.95 quantity in a single order
81101 2419.06 to date for each prod-
357499 3974.99 uct. Figure 6 shows par-
ij;fzg 2213:32 Fial resultg. Thfe query is
3374.99 3374.99 included in this month’s
229728 2297 28 downloads as SalesBy-
4716.34 2419 06 YearMonthDayWithMin-
Max.sql.

Figure 4. Include ORDER BY when using OVER with SUM() to get a running total.

Running totals are probably the easiest of this
type of calculation to understand, but you can do
the same thing with most of the aggregate func-
tions. When you apply ORDER BY to AVG(), you
get a moving average, that is, the average of the all
the records in the group up to this point. The last

Listing 7. Applying OVER with ORDER BY to MIN() and MAX()
lets you compute the minimum and maximum so far.

SELECT DISTINCT Orderdate,
SUM (sod.orderqgty)

ProductlID,
OVER

(PARTITION BY sod.productID,

YEAR (orderdate))
SUM (sod.orderqgty)

AS Yearly,
OVER

record in the group will show the average for the
whole group. Listing 6 (included in this month’s
downloads as SalesWithMovingAverage.sql) dem-
onstrates by computing the moving average of
sales for a customer within a year. Figure 5 shows

partial results.

CustomerlD OrderDate Yearly Monthly RunningA...
011-06-21 00:00:00.000 3399.99 3399.99 3399.99
11000 2013-06-20 00:00:00.000 4849.00 2341.97 2341.97
11000 2013-10-03 00:00:00.000 4849.00 2507.03 2424.50
11001 2011-06-17 00:00:00.000 3374.99 3374.99 3374.99
11001 2013-06-18 00:00:00.000 2419.93 2419.93 2419.93
11001 2014-05-12 00:00:00.000 58896 583.96 588.96
11002 2011-06-09 00:00:00.000 3399.99 3399.99 3399.99
11002 2013-06-02 00:00:00.000 4714.05 2294.99 2294.99
11002 2013-07-26 00:00:00.000 4714.05 2419.06 2357.025
11003 2011-05-31 00:00:00.000 3399.99 3399.99 3399.99
11003 2013-06-07 00:00:00.000 4739.30 2318.96 2318.96
11003 2013-10-10 00:00:00.000 4739.30 2420.34 2369.65

Figure 5. The last column here shows the moving average of
sales for a customer within a year. Look at the last record for
each customer for the year to see the overall average for the
year.

Listing 6. Using AVERAGE with OVER and an ORDER BY
clause gives moving averages, the average of the records in
the group up to and including the current record.

SELECT CustomerID, OrderDate,
SUM (Subtotal) OVER
(PARTITION BY CustomerID,
YEAR (orderdate)) AS Yearly,

Page 8

FoxRockX

(PARTITION BY sod.productID,
YEAR (orderdate), MONTH (orderdate))
AS Monthly,
SUM (sod.ordergty) OVER
(PARTITION BY sod.productID,
orderdate) AS Daily,
MIN (OrderQty) OVER
(PARTITION BY ProductID
ORDER BY OrderDate) as MinOrder,
MAX (OrderQty) OVER
(PARTITION BY ProductID
ORDER BY OrderDate) as MaxOrder
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON soh.SalesOrderID = sod.SalesOrderID
ORDER BY ProductID, OrderDate

Orderdate Produc... Yea.. Mont.. Daily MinOr... MaxOrd...
2011-05-31 00:00:00.000 709 608 38 38 2 6
2011-07-01 00:00:00.000 709 608 134 134 2 26
2011-08-01 00:00:00.000 709 608 167 79 2 26
2011-08-31 00:00:00.000 709 608 167 88 2 26
2011-10-01 00:00:00.000 709 608 224 123 2 26
2011-10-31 00:00:00.000 709 608 224 101 2 26
2011-12-01 00:00:00.000 709 608 45 45 2 26
2012-01-01 00:00:00.000 709 499 181 102 1 26
2012-01-29 00:00:00.000 709 499 181 79 1 26
2012-02-29 00:00:00.000 709 499 78 78 1 26
2012-03-30 00:00:00.000 709 499 135 135 1 26
2012-04-30 00:00:00.000 709 499 105 105 1 32
2011-05-31 00:00:00.000 710 66 5 5 1 3
2011-07-01 00:00:00.000 710 66 13 13 1 4
2011-08-01 00:00:00.000 710 66 19 6 1 4

Figure 6. The last two columns show running minimums and
maximums for the quantity of a product in an individual order.

March 2015

Aggregating subsets within

partitions

SQL Server 2012 also introduced another way of
narrowing down which records are aggregated.
The ROWS and RANGE clauses let you specify that
a calculation is applied only to some records within
a partition. Let’s look at an example first.

Suppose you want to compute yearly orders
for each product as well as a two-year moving total.
That is, each record in the result should show you
sales in a given year for a product, plus the sales
for that product across the year you're looking at
and the prior year. Your initial reaction may be that
you’d need a loop of some sort to compute the two-
year (or three-year or five-year totals) after getting
yearly totals, but OVER with the ROWS clause
makes this fairly easy. Listing 8 (SalesByYear-
WithTwoYearTotal.sql in this month’s downloads)
shows the query; Figure 7 shows partial results. The
query uses a CTE to compute the number of items
sold each year for each product. Then, the ROWS
clause in the fourth field in the main query indi-
cates that the field TwoYear should be computed as
the sum of NumSold for the current record and the
preceding record within the partition. Note that for
the first row of each product, Yearly and TwoYear
are the same.

OrderYear ProductlD Yearly TwoYear

2011 707 331 331
2012 707 1278 1609
2013 707 2940 4218
2014 707 1717 4657
2011 708 341 341
2012 708 1387 1728
2013 708 3088 4475
2014 708 1716 4804
2011 709 608 608
2012 709 499 1107
2011 710 66 66
2012 710 24 90
2011 711 360 360
2012 711 1519 1879

Figure 7. The TwoYear column here is com-
puted using the ROWS clause.

Listing 8. The ROWS clause lets you apply a function to a sub-
set of a partition.

WITH csrYearlySales
(OrderYear, ProductID, NumSold)
AS
(SELECT year (OrderDate) AS OrderYear,
ProductID, SUM(OrderQty) AS NumSold
FROM Sales.SalesOrderHeader SOH
JOIN Sales.SalesOrderDetail SOD
ON soh.SalesOrderID = sod.SalesOrderID
GROUP BY YEAR (OrderDate), ProductID)

SELECT OrderYear, ProductID,
NumSold AS Yearly,
SUM (NumSold) OVER (
PARTITION BY productID
ORDER BY OrderYear
ROWS BETWEEN 1 PRECEDING
AND CURRENT ROW) AS TwoYear
FROM csrYearlySales
ORDER BY ProductID, OrderYear

March 2015

As the example demonstrates, the ROWS
clause lets you specify a number of rows near the
current row. In addition to the PRECEDING and
CURRENT ROW items shown, you can also spec-
ifty FOLLOWING. For example, to have three-year
totals including the year before and the year after
the current year, you'd specify ROW BETWEEN 1
PRECEDING and 1 FOLLOWING.

The documentation refers to the group of rows
as a “window.” You can specify UNBOUNDED
PRECEDING as the start point to indicate that the
window begins with the first row of the partition,
or UNBOUNDED FOLLOWING as the end point
to say that the window ends with the last row of
the partition. Also, note that you can specify a win-
dow where all the rows in the window are before
the current row or all the rows are after the current
row. That is, either PRECEDING or FOLLOWING
can be used for either of the start and end points
of the window. For example, in the product orders
query, you might specify ROW BETWEEN 1 FOL-
LOWING and 2 FOLLOWING to compute a total
(or an average) for the next two years, not includ-
ing the current year.

The RANGE keyword lets you specify rows
based on value rather than position. You can’t
specify a number at either end with range. You
can start with CURRENT ROW or UNBOUNDED
PRECEDING and end with CURRENT ROW or
UNBOUNDED FOLLOWING.

You can also specify just CURRENT ROW,
which says to apply the function to all records in
the partition that have the same ORDER BY value
as the current record. This offers a way to com-
pute an aggregate while still looking at individual
records, as in Listing 9, where we list each order,
but include the daily sales total for the salesperson.
Partial results are shown in Figure 8. The query is
included in this month’s downloads as SalesWith-
DailyTotal.sql.

Orderdate SalesPerso... SubTotal SPDayTotal
2011-10-01 00:00:00.000 274 4194.589 6341.551
2011-10-01 00:00:00.000 274 2146.962 6341.551
2012-01-01 00:00:00.000 274 61206.4782 61206.4782
2012-01-29 00:00:00.000 274 6101.382 18307.746
2012-01-29 00:00:00.000 274 12206.364 18307.746
2012-02-29 00:00:00.000 274 33406.7043 33406.7043
2012-04-30 00:00:00.000 274 40708.4413 44670.6854
2012-04-30 00:00:00.000 274 3962.2441 44670.6854
2012-05-30 00:00:00.000 274 2927.7262 3575.7202
2012-05-30 00:00:00.000 274 647.994 3575.7202
2012-06-30 00:00:00.000 274 2458.9178 55616.5989
2012-06-30 00:00:00.000 274 4254.45 55616.5989
2012-06-30 00:00:00.000 274 48693.9751 55616.5989
2012-06-30 00:00:00.000 274 209.256 55616.5989
2012-07-31 00:00:00.000 274 53.994 523.788

Figure 8. The last column here shows the daily total for
the salesperson, using RANGE CURRENT ROW.

Listing 9. This query uses RANGE CURRENT ROW to com-
pute the daily total for each order’s salesperson.

SELECT Orderdate, SalesPersonID, SubTotal,
SUM (SubTotal) OVER

FoxRockX Page 9

(PARTITION BY SalesPersonID
ORDER BY OrderDate
RANGE CURRENT ROW) AS SPDayTotal
FROM Sales.SalesOrderHeader SOH
WHERE SalesPersonID IS NOT NULL
ORDER BY SalesPersonID, OrderDate

RANGE doesn’t let you narrow down to spe-
cific values, so you can’t ask for a function to be
applied to, say, all records with the same value as
this row and the one immediately following, or
with the same value as this row and the next pos-
sible value. To do calculations like that, you have to
figure out clever ways to partition and order your
data.

You can, though, ask for the function to apply
to records from this row’s value to the end, giving
you a “reverse running total.” The query in List-
ing 10 (included in this month’s downloads as
SalesWithReverseRunningTotalByDay.sql) com-
putes such a reverse running total of sales for the
salesperson. Figure 9 shows partial results. Note
that it’s still a daily computation because RANGE
uses the value of the ORDER BY expression to
choose records; for example, the first two rows
shown have the same value because they’re for the
same day.

Listing 10. The RANGE specified for the last column produces
a reverse running total, where the first row for each salesper-
son contains the total for that salesperson, and each subse-
quent row shows that total only from that date to the end.

SELECT Orderdate, SalesPersonID, SubTotal,
SUM (SubTotal) OVER
(PARTITION BY SalesPersonID
ORDER BY OrderDate
RANGE BETWEEN CURRENT ROW AND
UNBOUNDED FOLLOWING)
AS ReverseRunningTotal
FROM Sales.SalesOrderHeader SOH
WHERE SalesPersonID IS NOT NULL
ORDER BY SalesPersonID, OrderDate

Orderdate SalesPerso... SubTotal ReverseRunningT...
2011-10-01 00:00:00.000 274 4194.589 1069539.1606
2011-10-01 00:00:00.000 274 2146.962 1069539.1606
2012-01-01 00:00:00.000 274 61206.4782 1063197.6096
2012-01-29 00:00:00.000 274 6101.382 1001991.1314
2012-01-29 00:00:00.000 274 12206.364 1001991.1314
2012-02-29 00:00:00.000 274 33406.7043 983683.3854
2012-04-30 00:00:00.000 274 3962.2441 950276.6811
2012-04-30 00:00:00.000 274 40708.4413 950276.6811
2012-05-30 00:00:00.000 274 2927.7262 905605.9957
2012-05-30 00:00:00.000 274 647.994 905605.9957
2012-06-30 00:00:00.000 274 4254 .45 902030.2755
2012-06-30 00:00:00.000 274 48693.9751 902030.2755
2012-06-30 00:00:00.000 274 209.256 902030.2755
2012-06-30 00:00:00.000 274 24589178 902030.2755
2012-07-31 00:00:00.000 274 469.794 846413.6766

Figure 9. The reverse running total here declines each day for
the salesperson.

To compute areverse running total that declines
with each record rather than each day, change
RANGE to ROWS, as in Listing 11 (included in this
month’s downloads as SalesWithReverseRunning-
Total.sql). Partial results are shown in Figure 10.

Page 10 FoxRockX

Listing 11. Using ROWS rather than RANGE results in a com-
plete reverse running total that declines with each record.

SELECT Orderdate, SalesPersonlID, SubTotal,
SUM (SubTotal) OVER
(PARTITION BY SalesPersonID
ORDER BY OrderDate
ROWS BETWEEN CURRENT ROW AND
UNBOUNDED FOLLOWING)
AS ReverseRunningTotal
FROM Sales.SalesOrderHeader SOH
WHERE SalesPersonID IS NOT NULL
ORDER BY SalesPersonlID, OrderDate

Orderdate SalesPerso... SubTotal ReverseRunningT...
2011-10-01 00:00:00.000 274 4194.589 1067392.1986
2011-10-01 00:00:00.000 274 2146.962 1069539.1606
2012-01-01 00:00:00.000 274 61206.4782 1063197.6096
2012-01-29 00:00:00.000 274 6101.382 989784.7674
2012-01-29 00:00:00.000 274 12206.364 1001991.1314
2012-02-29 00:00:00.000 274 33406.7043 983683.3854
2012-04-30 00:00:00.000 274 3962.2441 909568.2398
2012-04-30 00:00:00.000 274 40708.4413 950276.6811
2012-05-30 00:00:00.000 274 2927.7262 904958.0017
2012-05-30 00:00:00.000 274 647.994 905605.9957
2012-06-30 00:00:00.000 274 4254.45 850668.1266
2012-06-30 00:00:00.000 274 48693.9751 899362.1017
2012-06-30 00:00:00.000 274 209.256 899571.3577
2012-06-30 00:00:00.000 274 2458.9178 902030.2755
2012-07-31 00:00:00.000 274 469.794 846359.6826

Figure 10. Use ROWS BETWEEN CURRENT ROW and UN-
BOUNDED FOLLOWING to compute reverse running totals.

While these examples of ROWS and RANGE use
the SUM() function, they actually can be applied to
any of the functions you can use with OVER, so you
can find, for example, the largest sale or the aver-
age sale for each salesperson on a daily basis. (You
might then use that to compute the ratio of a given
sale to the largest or average sale for that day.)

What’s Next?

In my next article, I'll look at the analytic functions
added to OVER in SQL SERVER 2012. These func-
tions let you find the first and last values in a par-
tition, let you access the preceding and following
records in the partition, and let you explore the dis-
tribution of values.

Author Profile

Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.
March 2015

