
Page 6 FoxRockX March 2015

More on OVER
The OVER keyword lets you compute group totals, running totals and more.

Tamar E. Granor, Ph.D.

In the May, 2014 issue, I showed how the OVER
keyword lets you find the top N in a group. This
month, we’ll look at some other ways to use OVER
to simplify calculations.
My previous article showed how to use OVER
with the various ranking functions (such as RANK
and RECORD_NUMBER) to assign each record
in a result set a rank. But OVER can also be used
with the aggregate functions: COUNT, SUM, AVG,
MIN, MAX and so forth. In addition, in SQL Server
2012 and later, there’s also a set of analytic func-
tions that work with OVER. In this article, I’ll look
at the aggregate functions, plus an additional way
to specify which records are used by the function.

A quick review
The OVER keyword lets you order data and apply
a function to the records in that order. You can also
divide (PARTITION) your data into groups and
apply a specified function to the records in each
group. For example, the query in Listing 1 numbers
employees in the order in which they joined their
current department.

Listing 1. OVER lets you put records in order and divide them
into groups, then apply a function to each record.
SELECT FirstName, LastName, StartDate,
 Department.Name,
 RANK() OVER
 (PARTITION BY Department.DepartmentID
 ORDER BY StartDate)
 AS EmployeeRank
FROM HumanResources.Employee
 JOIN HumanResources.EmployeeDepartmentHistory
 ON Employee.BusinessEntityID =
 EmployeeDepartmentHistory.BusinessEntityID
 JOIN HumanResources.Department
 ON EmployeeDepartmentHistory.DepartmentID =
 Department.DepartmentID
 JOIN Person.Person
 ON Employee.BusinessEntityID =
 Person.BusinessEntityID
 WHERE EndDate IS null

Aggregating with OVER
The aggregate functions are usually used in con-
junction with GROUP BY to compute things like
total sales for each salesperson each year, or the
number of days each student has been absent each
semester. At first glance, it would appear that using
aggregate functions with OVER would do the same
thing, but there are some important differences.

First, using OVER, you can aggregate on differ-
ent groups within a single query. For example, the
query in Listing 2 computes the yearly, monthly and
daily number sold for each product; Figure 1 shows
a portion of the results when the query is run against
the AdventureWorks 2014 example database. The
results show the other significant difference between
aggregating by GROUP BY and aggregating by
OVER. With GROUP BY, you end up with a single
record for each group. With OVER, you get what-
ever records the JOIN and WHERE clauses give you,
but they contain aggregated results.

Listing 2. OVER can be combined with the aggregate functions
to let you aggregate by different groups in a single query.
SELECT Orderdate, ProductID,
 SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 YEAR(orderdate)) AS Yearly,
 SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 YEAR(orderdate), MONTH(orderdate))
 AS Monthly,
 SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 orderdate) AS Daily
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON soh.SalesOrderID = sod.SalesOrderID
 ORDER BY ProductID, OrderDate

In this example, if you want to see just one
record for each date, add DISTINCT to the query,
as in Listing 3 (included in this month’s downloads
as SalesByYearMonthDay.sql). Figure 2 shows par-
tial results.

Figure 1. When you use OVER for aggregation, you
get all the records you’d get without it.

March 2015 FoxRockX Page 7

Listing 3. Adding DISTINCT to the query gives us one record
per date, but still includes yearly, monthly and daily totals.
SELECT DISTINCT Orderdate, ProductID,
 SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 YEAR(orderdate)) AS Yearly,
 SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 YEAR(orderdate), MONTH(orderdate))
 AS Monthly,
 SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 orderdate) AS Daily
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON soh.SalesOrderID = sod.SalesOrderID
 ORDER BY ProductID, OrderDate

Computing percentages
You can use OVER to compute what percent of a
total a particular record represents. Listing 4 builds
on the previous example to indicate what percent of
annual and monthly sales for the product a given
day’s sales represent. The number sold for the day
is divided by the number sold in the month or year;
that value is then multiplied by 100 and cast as a dec-
imal to show the percentage. Figure 3 shows partial
results. The query is included in this month’s down-
loads as SalesByYearMonthDayWithPcts.sql.

Listing 4. In this query, OVER is used with SUM() to figure out
what percent of a product’s monthly and yearly sales came on
a particular day.
SELECT DISTINCT Orderdate, ProductID,
 SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 YEAR(orderdate)) AS Yearly,
 SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 YEAR(orderdate), MONTH(orderdate))
 AS Monthly,
 SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 orderdate) AS Daily,
 CAST(1. * SUM(OrderQty) OVER
 (PARTITION BY sod.productID,
 OrderDate) / SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 YEAR(orderdate)) * 100
 AS decimal(5,2)) AS PctOfYear,
 CAST(1. * SUM(OrderQty) OVER
 (PARTITION BY sod.productID,
 orderdate)/SUM(sod.orderqty) OVER

 (PARTITION BY sod.productID,
 YEAR(orderdate), Month(orderdate))
 * 100 AS decimal(5,2)) AS PctOfMonth
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON soh.SalesOrderID = sod.SalesOrderID
 ORDER BY OrderDate, ProductID

Running totals and moving
averages
Although I’m working with SQL Server 2014, you
can use OVER with aggregate functions all the
way back to SQL Server 2005. However, until SQL
Server 2012, you couldn’t include an ORDER clause
with OVER and an aggregate function; that use of
OVER was restricted to PARTITION.

The ability to include ORDER BY with OVER
and aggregate functions lets you compute running
totals and what are called moving averages. When
ORDER BY is included, the specified aggregate is
computed for all records in the group up to and
including the current record. Listing 5 (included
in this month’s downloads as RunningSalesBy-
Customer.sql) demonstrates; it computes daily,
monthly and yearly sales by customer and includes
running totals for the monthly and yearly sales.
Partial results are shown in Figure 4 look at the
rows for customer 11007 to see the monthly run-
ning total change.

Listing 5. You can add ORDER BY to an OVER clause using
an aggregate function to get a running total or moving average.
SELECT DISTINCT CustomerID, Orderdate,
 SUM(sod.orderqty*sod.UnitPrice) OVER
 (PARTITION BY CustomerID,
 YEAR(orderdate)) AS Yearly,
 SUM(sod.orderqty*sod.UnitPrice) OVER
 (PARTITION BY CustomerID,
 YEAR(orderdate), MONTH(orderdate))
 AS Monthly,
 SUM(sod.orderqty*sod.UnitPrice) OVER
 (PARTITION BY CustomerID, orderdate)
 AS Daily,
 SUM(sod.orderqty*sod.UnitPrice) OVER
 (PARTITION BY CustomerID,
 YEAR(orderdate) ORDER BY orderdate)
 AS YearlyRunning,
 SUM(sod.orderqty*sod.UnitPrice) OVER
 (PARTITION BY CustomerID,

Figure 2.The query in Listing 3 results in one record per date

Figure 3. You can use OVER to compute what percent of a
group total a particular value or subset represents. Here, the
day’s sales are computed as a percentage of the annual and
monthly sales for the product.

Page 8 FoxRockX March 2015

 YEAR(orderdate), MONTH(orderdate)
 ORDER BY orderdate)
 AS MonthlyRunning
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON soh.SalesOrderID = sod.SalesOrderID
 ORDER BY CustomerID, OrderDate

Running totals are probably the easiest of this
type of calculation to understand, but you can do
the same thing with most of the aggregate func-
tions. When you apply ORDER BY to AVG(), you
get a moving average, that is, the average of the all
the records in the group up to this point. The last
record in the group will show the average for the
whole group. Listing 6 (included in this month’s
downloads as SalesWithMovingAverage.sql) dem-
onstrates by computing the moving average of
sales for a customer within a year. Figure 5 shows
partial results.

Listing 6. Using AVERAGE with OVER and an ORDER BY
clause gives moving averages, the average of the records in
the group up to and including the current record.
SELECT CustomerID, OrderDate,
 SUM(Subtotal) OVER
 (PARTITION BY CustomerID,
 YEAR(orderdate)) AS Yearly,

 SUM(Subtotal) OVER
 (PARTITION BY CustomerID,
 YEAR(orderdate), MONTH(orderdate))
 AS Monthly,
 AVG(Subtotal) OVER
 (PARTITION BY CustomerID,
 YEAR(OrderDate) ORDER BY OrderDate)
 AS RunningAvg
 FROM Sales.SalesOrderHeader
 ORDER BY CustomerID, OrderDate

Similarly, when you
use ORDER BY with
MIN() and MAX(), you
get the minimum or maxi-
mum value in the group
to this point. The query
in Listing 7 shows the
minimum and maximum
quantity in a single order
to date for each prod-
uct. Figure 6 shows par-
tial results. The query is
included in this month’s
downloads as SalesBy-
YearMonthDayWithMin-
Max.sql.

Listing 7. Applying OVER with ORDER BY to MIN() and MAX()
lets you compute the minimum and maximum so far.
SELECT DISTINCT Orderdate, ProductID,
 SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 YEAR(orderdate)) AS Yearly,
 SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 YEAR(orderdate), MONTH(orderdate))
 AS Monthly,
 SUM(sod.orderqty) OVER
 (PARTITION BY sod.productID,
 orderdate) AS Daily,
 MIN(OrderQty) OVER
 (PARTITION BY ProductID
 ORDER BY OrderDate) as MinOrder,
 MAX(OrderQty) OVER
 (PARTITION BY ProductID
 ORDER BY OrderDate) as MaxOrder
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON soh.SalesOrderID = sod.SalesOrderID
 ORDER BY ProductID, OrderDate

Figure 4. Include ORDER BY when using OVER with SUM() to get a running total.

Figure 5. The last column here shows the moving average of
sales for a customer within a year. Look at the last record for
each customer for the year to see the overall average for the
year.

Figure 6. The last two columns show running minimums and
maximums for the quantity of a product in an individual order.

March 2015 FoxRockX Page 9

Aggregating subsets within
partitions
SQL Server 2012 also introduced another way of
narrowing down which records are aggregated.
The ROWS and RANGE clauses let you specify that
a calculation is applied only to some records within
a partition. Let’s look at an example first.

Suppose you want to compute yearly orders
for each product as well as a two-year moving total.
That is, each record in the result should show you
sales in a given year for a product, plus the sales
for that product across the year you’re looking at
and the prior year. Your initial reaction may be that
you’d need a loop of some sort to compute the two–
year (or three-year or five-year totals) after getting
yearly totals, but OVER with the ROWS clause
makes this fairly easy. Listing 8 (SalesByYear-
WithTwoYearTotal.sql in this month’s downloads)
shows the query; Figure 7 shows partial results. The
query uses a CTE to compute the number of items
sold each year for each product. Then, the ROWS
clause in the fourth field in the main query indi-
cates that the field TwoYear should be computed as
the sum of NumSold for the current record and the
preceding record within the partition. Note that for
the first row of each product, Yearly and TwoYear
are the same.

Listing 8. The ROWS clause lets you apply a function to a sub-
set of a partition.
WITH csrYearlySales
 (OrderYear, ProductID, NumSold)
AS
(SELECT year(OrderDate) AS OrderYear,
 ProductID, SUM(OrderQty) AS NumSold
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON soh.SalesOrderID = sod.SalesOrderID
 GROUP BY YEAR(OrderDate), ProductID)

SELECT OrderYear, ProductID,
 NumSold AS Yearly,
 SUM(NumSold) OVER (
 PARTITION BY productID
 ORDER BY OrderYear
 ROWS BETWEEN 1 PRECEDING
 AND CURRENT ROW) AS TwoYear
 FROM csrYearlySales
 ORDER BY ProductID, OrderYear

As the example demonstrates, the ROWS
clause lets you specify a number of rows near the
current row. In addition to the PRECEDING and
CURRENT ROW items shown, you can also spec-
ify FOLLOWING. For example, to have three-year
totals including the year before and the year after
the current year, you’d specify ROW BETWEEN 1
PRECEDING and 1 FOLLOWING.

The documentation refers to the group of rows
as a “window.” You can specify UNBOUNDED
PRECEDING as the start point to indicate that the
window begins with the first row of the partition,
or UNBOUNDED FOLLOWING as the end point
to say that the window ends with the last row of
the partition. Also, note that you can specify a win-
dow where all the rows in the window are before
the current row or all the rows are after the current
row. That is, either PRECEDING or FOLLOWING
can be used for either of the start and end points
of the window. For example, in the product orders
query, you might specify ROW BETWEEN 1 FOL-
LOWING and 2 FOLLOWING to compute a total
(or an average) for the next two years, not includ-
ing the current year.

The RANGE keyword lets you specify rows
based on value rather than position. You can’t
specify a number at either end with range. You
can start with CURRENT ROW or UNBOUNDED
PRECEDING and end with CURRENT ROW or
UNBOUNDED FOLLOWING.

You can also specify just CURRENT ROW,
which says to apply the function to all records in
the partition that have the same ORDER BY value
as the current record. This offers a way to com-
pute an aggregate while still looking at individual
records, as in Listing 9, where we list each order,
but include the daily sales total for the salesperson.
Partial results are shown in Figure 8. The query is
included in this month’s downloads as SalesWith-
DailyTotal.sql.

Listing 9. This query uses RANGE CURRENT ROW to com-
pute the daily total for each order’s salesperson.
SELECT Orderdate, SalesPersonID, SubTotal,
 SUM(SubTotal) OVER

Figure 7. The TwoYear column here is com-
puted using the ROWS clause.

Figure 8. The last column here shows the daily total for
the salesperson, using RANGE CURRENT ROW.

Page 10 FoxRockX March 2015

 (PARTITION BY SalesPersonID
 ORDER BY OrderDate
 RANGE CURRENT ROW) AS SPDayTotal
 FROM Sales.SalesOrderHeader SOH
 WHERE SalesPersonID IS NOT NULL
 ORDER BY SalesPersonID, OrderDate

RANGE doesn’t let you narrow down to spe-
cific values, so you can’t ask for a function to be
applied to, say, all records with the same value as
this row and the one immediately following, or
with the same value as this row and the next pos-
sible value. To do calculations like that, you have to
figure out clever ways to partition and order your
data.

You can, though, ask for the function to apply
to records from this row’s value to the end, giving
you a “reverse running total.” The query in List-
ing 10 (included in this month’s downloads as
SalesWithReverseRunningTotalByDay.sql) com-
putes such a reverse running total of sales for the
salesperson. Figure 9 shows partial results. Note
that it’s still a daily computation because RANGE
uses the value of the ORDER BY expression to
choose records; for example, the first two rows
shown have the same value because they’re for the
same day.

Listing 10. The RANGE specified for the last column produces
a reverse running total, where the first row for each salesper-
son contains the total for that salesperson, and each subse-
quent row shows that total only from that date to the end.
SELECT Orderdate, SalesPersonID, SubTotal,
 SUM(SubTotal) OVER
 (PARTITION BY SalesPersonID
 ORDER BY OrderDate
 RANGE BETWEEN CURRENT ROW AND
 UNBOUNDED FOLLOWING)
 AS ReverseRunningTotal
 FROM Sales.SalesOrderHeader SOH
 WHERE SalesPersonID IS NOT NULL
 ORDER BY SalesPersonID, OrderDate

To compute a reverse running total that declines
with each record rather than each day, change
RANGE to ROWS, as in Listing 11 (included in this
month’s downloads as SalesWithReverseRunning-
Total.sql). Partial results are shown in Figure 10.

Listing 11. Using ROWS rather than RANGE results in a com-
plete reverse running total that declines with each record.
SELECT Orderdate, SalesPersonID, SubTotal,
 SUM(SubTotal) OVER
 (PARTITION BY SalesPersonID
 ORDER BY OrderDate
 ROWS BETWEEN CURRENT ROW AND
 UNBOUNDED FOLLOWING)
 AS ReverseRunningTotal
 FROM Sales.SalesOrderHeader SOH
 WHERE SalesPersonID IS NOT NULL
 ORDER BY SalesPersonID, OrderDate

While these examples of ROWS and RANGE use
the SUM() function, they actually can be applied to
any of the functions you can use with OVER, so you
can find, for example, the largest sale or the aver-
age sale for each salesperson on a daily basis. (You
might then use that to compute the ratio of a given
sale to the largest or average sale for that day.)

What’s Next?
In my next article, I’ll look at the analytic functions
added to OVER in SQL SERVER 2012. These func-
tions let you find the first and last values in a par-
tition, let you access the preceding and following
records in the partition, and let you explore the dis-
tribution of values.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

Figure 9. The reverse running total here declines each day for
the salesperson.

Figure 10. Use ROWS BETWEEN CURRENT ROW and UN-
BOUNDED FOLLOWING to compute reverse running totals.

