
January, 2001

Advisor Answers

Managing Grid actions

VFP 6.0

Q: I have code in my grid column header's Click event to sort data in
the column - similar to the Microsoft Office programs. However, if I

resize that column with my mouse, it causes the header's Click to
occur, which runs the sorting code. Is there a way to resize a column

with the mouse that does not also run the header Click event?

—Bob Thomsen (via Advisor.com)

A: You can't prevent the header's Click method from firing in this
situation. Sizing a grid column always calls the Click method for the

actual column being sized, which is the left-hand column of the two
the mouse is between. However, there is a way to determine whether

the Click came from a resizing action. The key is to use the grid's
GridHitTest method, which lets you determine where you are in the

grid.

GridHitTest was added in VFP 6 and provides some really useful
information. You pass it coordinates and it tells you what component

of the grid that point is over (or if it's not in the grid at all), as well as
the relative row and column of the point. GridHitTest is an unusual

method in that it expects several of its parameters to be passed by
reference – that's how it can return multiple data values. Here's the

syntax for GridHitTest:

GridHitTest(nXCoord, nYCoord, @nComponent, @nRelativeRow, @nRelativeColumn
 [, @nPane])

The value stored in nComponent is a number that indicates which part

of the grid that point is on. It's assigned 0 if the specified point isn't in
the grid. For our task, the key values are 1, which indicates a header

and 2, which indicates between headers. (The nPane parameter is for

situations where the grid is split – it tells you which pane of the grid
contains the specified point.)

To apply GridHitTest to prevent Click code from running, you need to
get your hands on the point at which the Click occurred. The Click

method doesn't have this information, but MouseDown does. It also
turns out that you have to test the point before the move occurs, so

the header's MouseDown method is a good place to call GridHitTest.

Once you've done so, you need to store the nComponent value to
make it available in the header's Click method.

Here are the steps you need to take to prevent your custom Click code
from firing when you resize a column:

1) Add a custom property to the form. Call it nLastComponent.

2) Add this code to the MouseDown method of each header:

LPARAMETERS nButton, nShift, nXCoord, nYCoord
LOCAL nComp, nRelRow, nRelCol
This.Parent.Parent.GridHitTest(nXCoord, nYCoord, @nComp, @nRelRow, @nRelCol)
ThisForm.nLastComponent = nComp

3) In the header's Click method, use code like this to check whether

it's a real click or a resize:

IF ThisForm.nLastComponent = 1
 * This is actually a click. Put your custom code here.
ELSE
 * This is a resize. Behave appropriately.
ENDIF

The biggest problem with this solution is that you need to put code in

two methods of every header. Clearly, a better solution is to subclass
the Header class, and put the code you need there. This raises two

(related) problems.

First, headers can't be subclassed using the Class Designer. The

solution to this problem is to create your subclass in code. Here's code
for a header subclass that does the job. Note that I've moved the

nLastComponent property from the form to the header for better
encapsulation.

DEFINE CLASS hdrResize AS Header
nLastComponent = 0
PROCEDURE MouseDown
LPARAMETERS nButton, nShift, nXCoord, nYCoord
LOCAL nComp, nRelRow, nRelCol
This.Parent.Parent.GridHitTest(nXCoord, nYCoord, @nComp, @nRelRow, @nRelCol)
This.nLastComponent = nComp
RETURN
PROCEDURE Click
IF This.nLastComponent = 1
 * This is actually a click. Put your custom code here.
ELSE
 * This is a resize. Behave appropriate.
ENDIF

RETURN
ENDDEFINE

The second problem is more difficult. You can't tell the grid to simply

use a particular header class. Instead, you need to change the header
of each column. You can do this by removing the base class header

and substituting your custom header class. While it's possible to do so
at design-time with a builder, that approach raises other problems that

make it more trouble than it's worth. The robust way to do this is to
replace the headers at runtime by putting code in the grid's Init

method.

Here's the code – it assumes that the header class above is stored in a

file called HdrClass.PRG. It gives the new header for each column the
same name and caption as the one it's replacing.

FOR EACH oColumn IN This.Columns
 FOR EACH oControl IN oColumn.Controls
 IF UPPER(oControl.BaseClass) = "HEADER"
 cHdrName = oControl.Name
 cCaption = oControl.Caption
 oColumn.RemoveObject(cHdrName)
 oColumn.NewObject(cHdrName, "hdrResize", ;
 "hdrClass.PRG")
 oColumn.&cHdrName..Caption = cCaption
 ENDIF
 ENDFOR
ENDFOR

Of course, once you're replacing base class headers with your own
custom class, you can put whatever code you think appropriate in the

class. Your code to re-order the grid is one obvious candidate for this

treatment.

In addition, if you're using a grid subclass, you can do the job once by

adding custom properties to hold the header class name and class
library. Then, in the grid class's Init method, check those properties

and if they're not empty, run the loop above, substituting the
properties for the hard-coded names I used.

You'll find the simple Header class and the code for the grid's Init on
this month's Professional Resource CD.

–Tamar

