
September 2011 FoxRockX Page 7

Make Your Queries Fly
VFP provides the tools to let you figure out why SQL commands are
slow. Learn how to check query optimization with a pair of built-in
functions.

Tamar E. Granor, Ph.D.
In the January, 2010 issue, I wrote about changes
in VFP's SQL commands in VFP 8 and 9. But one
of the key elements in using SQL commands is that
they can be very fast. When they're not, you need to
figure out why. Fortunately, VFP includes a couple
of functions that help you do so.
A key benefit of writing SQL commands rather
than traditional Xbase commands is that you tell
the computer what you want, but you don't have
to figure out how to get it. That allows VFP's SQL
engine to figure out the best way to get the results
you've requested. The engine does its best to give
you what you want as fast as it can, but sometimes
that's still not good enough.

When a SQL command is too slow, you need
to see what the engine is doing, so you can change
something to make it faster. VFP provides two
functions that let you understand what the engine
doing, SYS(3054) and SYS(3092).

How VFP optimizes
Before looking at the functions, you need a basic
understanding of how VFP's optimizer, known as
Rushmore, works. Rushmore is based on indexes.
When a command filters on an expression and
there's an index for that expression, Rushmore uses
the index to find the matching records rather than
searching sequentially through the table. In almost
every case, reading the index is faster than reading
the actual records. For Rushmore to use an index,
the index key must exactly match the expression in
the command.

When a command involves multiple filter
conditions, Rushmore looks for an index for each
condition separately. It then takes whichever
indexes it finds and looks to see which records they
have in common.

Of course, this is an oversimplification. Conditions
combined with AND are handled differently than
conditions combined with OR. But the key point
is that, for each optimizable condition, Rushmore
reads into memory only the portion of the index
that identifies records matching that condition, and
then creates a bitmap indicating which records in the
table fit. The bitmaps for the various conditions are
combined appropriately.

Once all optimizable conditions have been
combined, those records they identify are pulled
into memory, and any remaining conditions are
checked sequentially against those records.

Thus, the key element in optimizing SQL
commands is ensuring that appropriate index tags
exist. Not surprisingly then, the functions that let you
see how your queries are being optimized present
their results in terms of what tags the engine uses.

Seeing Rushmore's plan
The SYS(3054) function, added in VFP 5, is known
as "SQL ShowPlan" because it displays the plan for
executing a SQL command. It has several modes of
operation, shown in Table 1.

When turning SQL ShowPlan on, you have
two things to decide; there are two choices for each
of them. The first decision is whether to show the
plan for filters only or for both filters and joins; I
rarely choose filters only because when I'm testing
optimization, I want to know everything about
how Rushmore is working. The second decision is
whether to include the query itself in the output.
For Command Window testing, that can be overkill,
but when testing in an application (especially in
conjunction with SYS(3092), it's very handy.

Table 1. SYS(3054) lets you turn SQL ShowPlan on and off.
You also determine whether the command being tested is in-
cluded in the output.

Value Meaning

0 Turn off SQL ShowPlan

1 Turn on SQL ShowPlan for filters only

2 Turn on SQL ShowPlan for filters only
and include the command in the output

11 Turn on SQL ShowPlan for filters and
joins

12 Turn on SQL ShowPlan for filters and
joins and include the command in the
output

Let's look at some examples. I'll use data from
the Northwind database that comes with VFP.

Page 8 FoxRockX September 2011

Examining filter optimization
We'll start by looking at optimization of filters only.
Pass 1 or 2 to SYS(3054) to see the optimization plan
for filters, but not for joins.

Listing 1 shows code to turn on SQL ShowPlan,
then run a query, then turn SQL ShowPlan off. Figure
1 shows the output, which contains information
about every tag used for optimization, plus the
"optimization level" for each table in the query.

Listing 1. When you pass 1 or 2 to SYS(3054), it shows optimi-
zation only for filters. This code demonstrates.
SYS(3054,1)
SELECT OrderID, OrderDate, ;
 Customers.CompanyName AS Customer, ;
 Employees.LastName, ;
 Employees.FirstName, ;
 Shippers.CompanyName AS Shipper ;
 FROM Orders ;
 JOIN Customers ;
 ON Orders.CustomerID = ;
 Customers.CustomerID ;
 JOIN Employees ;
 ON Orders.EmployeeID = ;
 Employees.EmployeeID ;
 JOIN Shippers;
 ON Orders.ShipVia = Shippers.ShipperID ;
 WHERE BETWEEN(OrderDate, {^ 1997-2-1}, ;
 {^ 1997-2-28}) ;
 ORDER BY OrderDate DESC, LastName ;
 INTO CURSOR csrOrderInfo
SYS(3054, 0)

At first glance, the information in Figure 1
might seem alarming, as it shows no optimization
for three of the four tables in the query. However, a
look at the query shows that only the Orders table is
filtered, so there's no need to optimize the others.

"Full" and "none" aren't the only possible results.
The optimization level for a table can also be "partial";
this occurs when there's more than one filter for a
table, at least one of the filters can be optimized and
at least one cannot. Listing 2 shows a query with two
filters on the Northwind Customers table. That table
has an index tag on UPPER(City), but has no tag on
Country. Figure 2 shows the output.

Listing 2. When there's more than one filter for a table, as in
this query, Rushmore optimizes what it can.
SYS(3054,1)

SELECT CompanyName ;
 FROM Customers ;
 WHERE Country = "UK" ;
 AND UPPER(City) = "LONDON" ;
 INTO CURSOR csrLondonEngland

SYS(3054,0)

One case where you'll often see "partial" is with
SET DELETED ON. Unless you have an index on
DELETED(), every table with an optimizable filter
condition will show "partial."

Even so, having a tag on DELETED() for each
table isn't always the best choice. This is one of the
cases where reading the relevant portion of the
index may take longer than individually checking
records not otherwise filtered. More on this subject
in my next article.

Examining join optimization
Optimization of joins is a little more interesting.
First, it tells you the order in which the joins were
performed, which can be quite different from
the order in which they appear in the query. In
addition, often there are two index tags that can
be used to optimize a join, one for each table. So
Rushmore has to figure out which tag to use for a
given join and what order of joins offers the best
performance.

Pass 11 to SYS(3054) to see filter and join
optimization. Pass 12 for the same information,
plus the query itself. Figure 3 shows the output for

the query in Listing 1, but using SYS(3054, 11).
In this example, where all joins are inner joins,

all the filtering is done first and then tables are
joined. The logical order of joins, specified in the
query, is Orders to Customers, then that result to
Employees, and finally that result to Shippers. But
the SYS(3054) output tells us that VFP first joined
Employees and Orders, then joined that result
to Shippers and finally joined that result with
Customers.

When showing optimization of a join, SYS(3054)
lists the table whose index was used for optimization
second. So, in the example, the join between
Employees and Orders was optimized using the
EmployeeID index of Orders (which makes sense,
as it's a much bigger table than Employees). For the
join between that initial result and Shippers, the
VFP engine decided that no existing index would
be useful and created an index on the fly (listed as
"temp index"). Again, that makes sense, because
Shippers is a tiny table (with only three records),

Figure 1. The output from SYS(3054) shows the tags used to
optimize each table and summarizes the optimization result for
each.

Figure 2. "Partial" optimization for a table indicates that there's
more than one filter, and at least one cannot be optimized.

Figure 3. When you pass 11 or 12 to SYS(3054), you see
optmization information for both filters and joins, including the
order in which the joins are performed.

September 2011 FoxRockX Page 9

so none of its indexes would help speed things up.
Nonetheless, for the final join, an existing index on
the Customers table was seen as offering more help
than creating an index on the intermediate result.

When a query involves outer joins, optimzation
results for filters and joins may be intermingled.
That's because outer joins limit the order in which
joins can be performed and may require some filters
to be executed later than they would be with inner
joins. Listing 3 shows a query involving an outer
join; it totals the number of items and the total price
for all seafood (category=8) items for all customers
in France. The RIGHT JOIN of Customers ensures
that every French customer is included in the
output. Figure 4 shows the optimization plan.

Listing 3. Outer joins change the optimization picture, since
they force some of the joins to happen after other joins.
SYS(3054, 11)

SELECT CompanyName, SUM(Quantity), ;
 SUM(Quantity * OrderDetails.UnitPrice);
 FROM Products ;
 JOIN OrderDetails ;
 ON OrderDetails.ProductID = ;
 Products.ProductID ;
 AND CategoryID = 8 ;
 JOIN Orders ;
 ON Orders.OrderID = ;
 OrderDetails.OrderID ;
 RIGHT JOIN Customers ;
 ON Customers.CustomerID = ;
 Orders.CustomerID ;
 WHERE Customers.Country = 'France' ;
 GROUP BY 1 ;
 INTO CURSOR csrSeafoodOrdersFrenchCustomers

SYS(3054, 0)

The results tell us that Products was filtered first
(and that OrderDetails and Orders would have been
filtered at the same time, if there were any filters on
those tables), then joined with OrderDetails using
the OrderDetails.ProductID tag. That intermediate
result was joined with Orders using the OrderID
tag from Orders. Then, the filter on the Country
field of Customers was applied, but not optimized
(because there's no tag on Country). Finally, the
Customers table was joined with the intermediate
result, and a temporary index was created, which
makes sense because by this point, there would be
quite a few records in the intermediate table.

In addition to using an existing index or creating
an index on the fly, the output can indicate that no
optimization was possible because a Cartesian join

occurred. A Cartesian join is also known as a cross
join or Cartesian product; it occurs when every
record from one table is matched to every record
from another table. Normally that's something
you want to avoid, although there are a few cases
where a Cartesian join is helpful in getting desired
results.

Listing 4 shows a complex SQL INSERT that
adds records to a data warehouse. The goal is to add
one record to the warehouse for each combination
of employee and product, showing how much of
the product the employee sold in the specified year
(indicated by nYear). Some employees may not
have sold any of some products in the specified
year, so we use a Cartesian join between Employees
and Products to get every combination into the
result. Figure 5 shows SYS(3054, 11) output for this
command.

Listing 4. While Cartesian joins are normally to be avoided, in
some situations, they solve a problem. The Cartesian join in
this command ensures that we insert a record for every combi-
nation of employee and product.
INSERT INTO Warehouse ;
SELECT CrossProd.ProductID, ;
 CrossProd.EmployeeID, ;
 m.nYear as Year, ;
 NVL(UnitsSold, 0), NVL(TotalSales, $0);
 FROM (;
 SELECT Employees.EmployeeID, ;
 Products.ProductID ;
 FROM Employees, Products) ;
 AS CrossProd ;
 LEFT JOIN (;
 SELECT ProductID, EmployeeID, ;
 SUM(Quantity) AS UnitsSold, ;
 SUM(Quantity * UnitPrice) ;
 AS TotalSales ;
 FROM Orders ;
 JOIN OrderDetails ;
 ON Orders.OrderID = ;
 OrderDetails.OrderID ;
 WHERE YEAR(OrderDate) = m.nYear ;
 GROUP BY ProductID, EmployeeID) ;
 AS AnnualSales ;
 ON CrossProd.EmployeeID = ;
 AnnualSales.EmployeeID ;
 AND CrossProd.ProductID = ;
 AnnualSales.ProductID ;
 ORDER BY 2, 1

Figure 4. When a query contains an outer join, the filters and
joins can be mixed.

Figure 5. Normally, seeing "(Cartesian product)" in SYS(3054)
output is a red flag. Here, it's not a problem because the
Cartesian join was intentional.

Page 10 FoxRockX September 2011

Managing ShowPlan output
By default, SYS(3054) sends its output to the active
window. In VFP 7 and later, you can capture the
output to a variable instead. Pass the name of the
variable as the third parameter. (Note that you
must pass the name, not the variable itself; that's
because there's no way to pass parameters by
reference to VFP's built-in functions.) Listing 5
demonstrates; after running a query, the variable
cOptInfo contains the optimization information.

Listing 5. When you pass the name of a variable as the third
parameter to SYS(3054), the optimization information is stored
in that variable.
SYS(3054, 12, "cOptInfo")

The variable can hold the results for only a single
SQL command. That is, you pass a variable name
to SYS(3054) and run a SQL command. If you then
run another SQL command, the variable is cleared
and only the results from the second command are
saved. This behavior makes it very difficult to take
advantage of SYS(3054) in an application setting.

In VFP 9, the Fox team introduced a better
approach that allows you to track optimization
throughout an application. SYS(3092) lets you send
optimization information to a file; call it before you
set SYS(3054). The syntax for SYS(3092) is shown in
Listing 6.

Listing 6. SYS(3092) lets you indicate where to store the opti-
mization information produced by SYS(3054).
cLogFile = SYS(3092 [, cFileName
 [, lAdditive]])

Call the function with no additional parameters
(just SYS(3092)) to find the name of the currently
active log file. When you pass a file name as the
second parameter, that file becomes the active log file
and the function returns that value. The lAdditive
parameter determines whether new data is added to
an existing file or the file is emptied first. Regardless,
once you turn logging on, all SQL ShowPlan results
are stored to the specified file.

To turn off the log so you can see its contents,
call SYS(3092) again, passing the empty string for
the file name.

Listing 7 shows a complete example. SYS(3092)
sets up a log file, and then SYS(3054) is called to
turn on SQL ShowPlan. A query is executed, and
then SQL ShowPlan and the log are turned off.

Listing 7. Combine SYS(3054) with SYS(3092) to let you store
optimization results in a file.
SYS(3092, "Optim.Log")
SYS(3054, 12, "cGrabOutput")
SELECT CustomerID, ;
 COUNT(DISTINCT OrderDate) ;
 AS DatesOrdered, ;
 COUNT(OrderDate) AS TotalOrders ;
 FROM Orders ;
 GROUP BY 1 ;
 INTO CURSOR csrHowManyOrders
SYS(3054, 0)
SYS(3092, "")

Turning on logging doesn't keep SYS(3054)
from displaying its results in the active window. If
you want to keep the output from showing in the
active window, pass a variable name to SYS(3054),
as in the example.

Logging optimization to a file isn't useful only
for tracking multiple SQL commands. It's also
handy for figuring out what's going on at a client
site. You might set up a hidden mechanism in your
application to turn logging of SQL ShowPlan on
and off. When a client reports a slowdown, have the
client turn logging on, run the troublesome process,
turn logging off, and send you the log.

Using ShowPlan results
Once you see how VFP is optimizing your queries,
you're halfway to speeding them up. The next
step is to examine the results and make changes,
to your data, to your code or to both to allow VFP
to be smarter. In my next article, I'll look at some
common issues in query optimization.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for businesses
and other organizations. She currently focuses on
working with other developers through consulting and
subcontracting. Tamar is author or co-author of nearly
a dozen books including the award winning Hacker’s
Guide to Visual FoxPro, Microsoft Office Automation
with VisualFoxPro and Taming Visual FoxPro’s SQL .
Her latest collaboration is Making Sense of Sedna
and SP2. Her books are available from Hentzenwerke
Publishing (www.hentzenwerke.com). Tamar is a
Microsoft Support Most Valuable Professional and
one of the organizers of the annual Southwest Fox
conference. In 2007, Tamar received the Visual FoxPro
Community Lifetime Achievement Award. You can
reach her at tamar@thegranors.com or through www.
tomorrowssolutionsllc.com.

