
April, 2001

Have it your way!

Add-ins provide an easy way to enhance the Class Browser

I don't use the Class Browser as much some people do. I like it for

examining class libraries I didn't write and for turning a class into code
that I can publish, but it's not a tool I use all the time. But recently, I

needed to do something and thought the Class Browser should be able
to do it for me. That was the beginning of my odyssey into creating a

Class Browser add-in.

The task in question was a simple one, something we've all probably

done a number of times. I was starting a new project and wanted to
subclass every class in my base class library, putting the subclasses in

a new project-specific library.

The Class Browser has a button to create a new class from an existing

class. It brings up the dialog in Figure 1, where the destination
defaults to the current library. To use that button to subclass the

whole library, I'd have to select each class, click the button, then fill in

the name for the class and specify the destination library. Definitely
too much work.

Figure 1. The New Class dialog – the New Class button in the Class Browser brings
up this dialog, making it tedious to use for subclassing a whole library.

But this still seemed like a Class Browser task to me. I realized it was
time for me to write my first Class Browser add-in.

What's an add-in?

Like many of VFP's tools, the Class Browser (I'll often refer to it as "the
Browser" in this article) has an open architecture. The Browser is an

object, with many public methods. One way to add functionality to the
Browser, then, is to subclass it and either add methods or override

existing methods. But one look at the Class Browser's code convinced

me that I didn't want to do that.

The Class Browser also offers an extension method that doesn't

require you to dig so deeply into its guts. An add-in is a program
attached to the Browser that can manipulate the open objects, using

the Browser's methods and properties. You can attach an add-in to
any Class Browser event or simply put it on a menu of add-ins. I chose

to do the latter for my library subclassing add-in.

Attaching an add-in

Connecting an add-in to the Class Browser is simple. You call the

Browser's AddIn method, passing appropriate information and the add-
in is inserted into the Browser's registration table (Browser.DBF in

VFP's Home directory). You only have to register an add-in once and
you can use it thereafter. To get to the AddIn method, you can use the

public _oBrowser reference that's created whenever you open the
Browser.

The syntax for registering an add-in is:

_oBrowser.AddIn(cName , cProgram [, cMethod])

cName is the name for the add-in-when you put an add-in on the
menu, cName is the name that appears. cProgram is the program

containing the add-in code, including its path. cMethod lets you specify
that the add-in should be fired by a particular Class Browser method.

If you omit this parameter, the add-in appears on the Add-ins menu.

There are a couple of other optional parameters, but you're not likely
to use them for most add-ins.

You can unregister an add-in by specifying only cName and passing
.null. for the second parameter:

_oBrowser.AddIn(cName, .null.)

Using an add-in from the menu

To run an add-in that you haven't hooked to an event, right-click on

either of the lower panes (the description panes) or on an unused
section of the toolbar row. The Browser's context menu appears.

Choose Add-ins and a menu of add-ins appears. Figure 2 shows the
Class Browser with the Add-ins menu open – it contains only my new

add-in.

Figure 2. Running an add-in – To use an add-in, you right-click on one of the
description panes or an unused section of the toolbar row. Choose Add-ins from the
menu and the Add-ins menu appears. Choose the one you want.

Creating an add-in

Now that we know how to register and use an add-in, we reach the

harder question. How do you write one? A key element is that every

add-in receives, as a parameter, an object reference to the Class
Browser object. That makes the Browser's properties and methods

available without having to use the _oBrowser global reference.
(That's particularly important if you might have more than one

instance of the Browser open. In that case, you don't know which
instance of the Browser _oBrowser refers to.)

The Browser object has a number of collections. Two of them are
particularly useful for writing add-ins. aFiles contains a list of the files

(class libraries, forms, etc.) open in the Browser, with nFileCount
holding the number of files. aClassList contains a list of all the classes

open in the Browser; nClassCount holds the number of classes.

For my add-in, I needed to work with only the aClassList collection. In

particular, I used the first column containing the name of the class and
the sixth column holding the name of the containing class library. (All

9 columns of aClassList are documented in the "Class Browser
Properties" Help topic.)

Some other Class Browser properties are useful here, too. The cClass
property contains the name of the currently selected class, while

cClassLibrary contains the name of the class library containing the
selected class. If the highlight is on a class library name, rather than a

class name, cClassLibrary contains that library name and cClass is
empty.

The Browser has lots of exposed methods. My first plan for my add-in
was to use the NewClass method. However, it turned out that the

method wouldn't allow me to store the new class in a different library
than the class it was based on.

So, I realized that I'd need to create the class with code. Fortunately,

the CREATE CLASS command can be used programmatically.
Unfortunately, it doesn't include a NOSHOW clause to create the class

without opening the Class Designer. That meant that I needed a way
to close the Class Designer for each class. A little experimentation

indicated that KEYBOARDing the sequence {CTRL+F4}Y would do the
trick. ("{CTRL+F4}" closes the Class Designer window. "Y" answers

the prompt as to whether the class should be saved.)

First attempt

My first version of this add-in was quite simple. It did a lot of checking

to make sure that there was something to do. Once it made sure that
the Class Browser was open, that a class library was open, and so

forth, it prompted for the location of the new class library. After that, it
looped through the aClassList collection, and for each class in the

appropriate class library (because you can have multiple class libraries
open in the Browser), issued a KEYBOARD command and CREATE

CLASS command. Here's the main processing loop of that version:

WITH oBrowser
 FOR nClass = 1 TO .nClassCount
 * Only the ones in the current library
 IF .aClassList[nClass, 6] = .cFileName AND ;
 STRTRAN(STRTRAN(.aClassList[nClass, 1], ;
 "(", ""), ")", "") <> .aClassList[nClass, 6]

 * Set up to shut down the Class Designer
 KEYBOARD "{CTRL+F4}Y"

 * Create the class
 CREATE CLASS (.aClassList[nClass, 1]) ;
 OF (cNewClassLib) ;
 AS (.aClassList[nClass, 1]) ;
 FROM (.aClassList[nClass, 6])

 ENDIF
 ENDFOR
ENDWITH

This version had only a minor user interface – a call to PUTFILE() to
get a name for the destination library. You'll find this program on this

month's Professional Resource CD as NewLibOriginal.PRG.

Making it pretty

I quickly realized that there were a couple of things missing from my

add-in. First, what should happen if some of the classes to be copied
already existed in the destination class library? I wanted the ability to

control the results - to indicate for each class whether to keep the
existing class or overwrite it with a new subclass. This was significant

not just to avoid overwriting existing classes but also because
attempting to create a class with the same name as an existing class

causes a prompt to appear. This prompt was interfering with the
KEYBOARD command, requiring user action.

Second, I wanted a way to change the prefix and suffix of a class while
subclassing. Many developers use a prefix or suffix to indicate the level

of a class in their class hierarchy. For example, "a" might indicate

"abstract" while "c" is for "concrete". Some use a prefix or suffix to
indicate the client or project the class belongs to. So some method of

specifying a prefix or suffix to be removed and a new prefix or suffix to
be applied was called for.

What all this meant is that the add-in needed a user interface, not just
a call to PUTFILE() to specify the destination library. From the user's

perspective, two forms were needed: one to specify the destination
library and handle the prefix and suffix information (figure 2) and a

second for the case where the destination library already contains
some of the classes (figure 3).

Figure 3. Specifying subclassing parameters–This form (actually a page) lets the
add-in's user specify the destination library, determine how to handle prefixes and
suffixes, and indicate whether the new class library should be opened in the Class
Browser after subclassing is done.

Figure 4. Handling duplicates–This form (actually a page) appears if the destination
class library already contains any classes with the same names as classes to be
subclasses.

It was at this point that Jim Booth jumped in to help. He took on the

task of handling prefixes and suffixes while I worked on dealing with
duplicates. Jim suggested that rather than creating two separate

forms, we use a single form with a tabless pageframe. Each needed
"form" could really be a page.

We both agreed that, while we would use the Form Designer to set up,
tweak and test the interface for the add-in, once we got it working,

we'd save the form as code and include it in the PRG file for the add-
in. That way, all that needed to be distributed to others was a single

file.

It was also clear to us that while we would normally use our own

classes, for a tool like this, it made more sense to work with the VFP
base classes so that we wouldn't need to distribute any class libraries

with the add-in.

We migrated all the code that actually does the work into methods of

the form or of the objects on the form. When we put all our work
together, the main program of the add-in was significantly simplified.

After doing all the checking (the same as in the original version), it
just instantiates and runs the form:

LPARAMETERS oBrowser
LOCAL nClass, lHasClass, loFrmCopyClass
* First, make sure the Browser is out there
IF VarType(oBrowser) <> "O"
 WAIT WINDOW ;
 "Start the Class Browser before running this program.";
 NOWAIT
 RETURN .F.
ENDIF
WITH oBrowser
 * Now make sure there's a class library to work with
 IF .nClassCount = 0
 WAIT WINDOW ;
 "Open a class library in the Browser " + ;
 "before running this program." ;
 NOWAIT
 RETURN .F.
 ENDIF
 * Make sure it's a classlib, not a form
 IF UPPER(JustExt(.cFileName)) <> "VCX"
 WAIT WINDOW ;
 "This program only works with class libraries." ;
 NOWAIT
 RETURN .F.
 ENDIF
 * Make sure this classlib has classes
 lHasClass = .F.
 FOR nClass = 1 TO .nClassCount
 IF .aClassList[nClass, 6] = .cFileName AND ;
 STRTRAN(STRTRAN(.aClassList[nClass, 1], ;
 "(", ""), ")", "") <> .aClassList[nClass, 6]
 * Found one
 lHasClass = .T.
 EXIT
 ENDIF
 ENDFOR

 IF NOT lHasClass
 WAIT WINDOW ;
 "The source library must contain " + ;
 "at least one class";
 NOWAIT

 RETURN .F.
 ENDIF
ENDWITH
* Display form here
loForm = CreateObject("frmCopyClassLib",oBrowser)
loForm.Show(1)

RETURN

The code to actually create the subclasses changed, too. The new
version uses a couple of cursors to hold information about the classes

in the source library and in the destination library. The various
methods of the form work on these cursors rather than working

directly with the Browser's collections. The Classes cursor contains a
list of classes in the source library. Two logical fields, Preexists and

CopyOver, indicate whether there's already a class with this name in
the destination library and whether a new subclass should overwrite

the existing class. Here's the main copying code from the CopyLibrary
method of the form:

SCAN
 IF NOT Classes.Preexists OR ;
 (Classes.Preexists AND Classes.CopyOver)
 * If the class is new to the target or
 * it is marked to be an over write
 IF Classes.Preexists
 * If this is an over write
 *remove the existing class from the target
 REMOVE CLASS (ALLTRIM(Classes.NewClassName)) ;
 OF (lcNewLibrary)
 ENDIF
 * Set up to shut down the Class Designer
 KEYBOARD "{CTRL+F4}Y"
 * Create the class
 CREATE CLASS (ALLTRIM(Classes.NewClassName)) ;
 OF (lcNewLibrary) ;
 AS (ALLTRIM(Classes.OldClassName)) ;
 FROM (lcOldLibrary)
 ENDIF
ENDSCAN

Other methods of the form create and populate the two cursors,

change the class names based on the prefix and suffix specifications,
and handle all the various interface chores. You'll find the complete

specification for this add-in on this month's Professional Resource CD

and at Advisor.COM.

Learning more about the Class Browser

There are two good approaches for getting more information about
what's available in the Class Browser. The Class Browser's exposed

properties and methods are documented in the Help topics "Class
Browser Properties" and "Class Browser Methods."

The other technique is to open the Class Browser and examine it using
the Debugger. Open a couple of class libraries (and maybe even a

form) in the Browser, then examine the properties of the _oBrowser

object in the Locals window. This approach, in particular, helped me to
see what was really going on.

In addition, there are two articles about the Class Browser available at
the Microsoft Visual FoxPro website. The first

(http://msdn.microsoft.com/library/default.asp?URL=/library/backgrnd
/html/SB_Browser.htm) covers the Browser in general. The second

(http://msdn.microsoft.com/library/default.asp?URL=/library/backgrnd
/html/msdn_addins.htm) is specifically about creating add-ins.

Go for it

At first glance, adding behavior to the Class Browser add-in seems to
be something of a daunting task. But with the add-in capability and

the properties that are exposed, it's not that hard to get the Browser
to do what you want it to.

http://msdn.microsoft.com/library/default.asp?URL=/library/backgrnd/html/SB_Browser.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/backgrnd/html/SB_Browser.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/backgrnd/html/msdn_addins.htm
http://msdn.microsoft.com/library/default.asp?URL=/library/backgrnd/html/msdn_addins.htm

