Generating crosstabs in

VFP

Several tools make it easy to change from normalized data to crosstabbed
data with both rows and columns determined by the data in the set.

Tamar E. Granor, Ph.D.

One of the questions people often ask is how to
convert their normalized VFP data into a crosstab,
with each data item from a specified column turn-
ing into the header for a separate column. There
are several tools for creating crosstabs from Visual
FoxPro data.

To start exploring crosstabs, we’ll start with some-
thing simpler. The sample Northwind company
has employees only in the US and the UK. Sup-
pose you want to know how many there are in each
country. A simple query, shown in Listing 1, gives
you the answer; there are 4 UK employees and 5 US
employees.

Listing 1. It's easy to get one record for each value of interest.
Here, each record indicates how many employees are in a
given country.

SELECT country, COUNT(*) ;
FROM Employees ;
GROUP BY Country ;
INTO CURSOR csrEmpsByCountry

But what if you want to know how many there
are in each job in each country? Again, that’s not
hard. Listing 2 gives us one record for each combi-
nation of job title and country; results are shown in
Figure 1.

Listing 2. Group on more fields to break the data down into
smaller groups.

SELECT Title, Country, COUNT (*) ;
FROM Employees ;
GROUP BY Title, Country ;
INTO CURSOR csrEmpsByCountry

Csrempsbycountry =8 EoE <"
Title Country Cnt -
) de Sales Coordinator]iry 1 |
Tl sales Manager UK 1
Sales Representative UK 3
Sales Representative USE 3
Vice President, Sales USE 1
K »

Figure 1. Grouping on Title and Country lets us see how
many employees have each job in each country.

May 2016

But what if what you really want is one record
for each job title with a column for each country
showing how many employees in that country
have that job? That’s a crosstab. For a simple case
like this, you can get what you need with IIF(), as
in Listing 3 (included in this month’s downloads
as JobsByCountry.PRG). Figure 2 shows the results,
with one row for each job title and one column for
each country.

Listing 3. Here, combining SUM() with IIF() counts the number
of employees in each country with each job.

SELECT Title, ;
SUM(IIF (Country="US",1,0)) AS nUS,
SUM(IIF (Country="UK",1,0)) AS nUK ;
FROM Employees ;
GROUP BY Title ;
INTO CURSOR csrJobsByCountry

Csrjobsbycountry o -E- =)
Title Nus Nuk -
L de es Coordinato 1 0
Tl sales Manager 0 1
Sales Representative 3 3
Vice President, Sales 1 0

K »

Figure 2. A crosstab uses data to determine what columns are
in the result.

This approach works fine when you know the
exact number of columns you want and it’s not too
many. But more often, you don’t know how many
columns will be in the result, and you may not even
know the set of values they’re drawn from. That’s
where a crosstab tool comes in handy.

VFPXTab

There’s been a crosstab tool in the box since Fox-
Pro 2.0, where it was called GenXTab. The version
that comes with VFP is VFPXTab.PRG and it’s
found in the VFP home folder. The system variable
_GENXTAB points to it; the Query Designer uses
_GENXTAB when you create a crosstab query.

FoxRockX Page 7

Comments at the top of VFPXTab.PRG explain
its parameters and show how to call it, including
the structure of the data needed for it to work.
Basically, it expects to find a table or cursor with
three columns. By default, the data in the first col-
umn becomes the rows in the result, the data in the
second column becomes the columns in the result,
and the data in the third column is aggregated
(summed, by default) to form the data in the result.

For example, suppose we want the total sales
for each salesperson for each year with a row for
each salesperson and a column for each year. We
start with a query to collect the relevant data,
shown in Listing 4; Figure 3 shows partial results.

Listing 4. This query gives us one record for each employee
for each year, showing total sales.

SELECT EmployeelD, ;
YEAR (OrderDate) AS OrderYear, ;
SUM (Quantity*UnitPrice) AS OrderTotal ;
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID =
OrderDetails.OrderID ;

GROUP BY 1, 2 ;
INTO CURSOR csrYearlyTotals

Employeeid Orderyear Ordertotal
| 1 1996§ 38789.0000
1 1997 97533.5800
1 1998 65821.1300
2 1996 22834.7000
2 1997 74958.6000
2 1998 79955.9600
3 1996 19231.8000
3 1997 111788.6100
3 1998 82030.8900
4 1996 53114.8000
4 1997 139477.7000
4 1998 57594.9500
5 1996 21965.2000
S 1997 32595.0500
5 1998 21007.5000
6 1996 17731.1000

Figure 3. The query in Listing 4 results in one record per
salesperson per year.

To get the results we want, we instantiate
the GenXTab class in VFPXTab.PRG and call its
MakeXTab method, as in Listing 5. The class takes
10 parameters that configure its behavior. (Because
I don’t recommend actually using this cross-
tab tool, I'm not going to go into detail about the
parameters. They’re documented in the code.) The
two parameters passed in the example indicate that
the result should be stored in a cursor (rather than
a table) named csrXTab. Figure 4 shows the result.

Listing 5. The GenXTab class in VFPXTab accepts up to 10

parameters.

oXTab = NEWOBJECT ("genxtab", GENXTAB,'', ;
"csrXTab", .t.)

oXTab.MakeXtab ()

Page 8 FoxRockX

0 Csnctab [ESS BB 5

Employeeid N_1996 N_1997 N_1998 -
38789.0000 97533.5800 65821.1300

22834.7000 74958.6000 79955.9600

19231.8000 111788.6100 82030.8900
53114.8000 139477.7000 57594.9500
21965.2000 32595.0500 21007.5000
17731.1000 45992.0000 14475.0000
18104.8000 66689.1400 56502.0500
23161.4000 59776.5200 50363.1100
11365.7000 29577.5500 42020.7500

1« »

Wimialoin e win

Figure 4. This crosstab has one row per employee and one
column per year

A complete program collecting the data and
running the crosstab, as well as timing the crosstab
process, is included in this month’s downloads as
SalesPersonAnnualSales.PRG. The downloads also
include SalesPersonMonthlySales.PRG, which gen-
erates a crosstab with one row per salesperson and
a column for each month of 1997.

As the size of the data set supplied to VFPXTab
grows, generating a crosstab gets much slower. In
Listing 6, the result has one row for each date in the
data set and a column for each salesperson; Figure
5 shows partial results. This example is included in
this month’s downloads as SalesPersonDailySales.
PRG.

Listing 6. Here, the final result has one row per day with one
column per salesperson.

SELECT OrderDate, ;
EmployeelID, ;
SUM (Quantity*UnitPrice) AS OrderTotal ;
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID = ;
OrderDetails.OrderID ;
GROUP BY 1, 2 ;
INTO CURSOR csrDailyTotals

LOCAL oXTab

oXTab = NEWOBJECT ("genxtab", _ GENXTAB, 'Y,
"csrXTab", .t.)
oXTab.MakeXtab ()

Orderdate N 1 N 2 N_3 N_4
07/04/199 .0000; .0000 0.0000 0.0000
0

0 0
07/05/96 0.0000 0.0000 0.0000 .0000
07/08/96 0.0000 0.0000: 670.8000: 1813.0000
07/09/96 0.0000 0.0000 0.0000: 3730.0000
07/10/96 0.0000 0.0000: 1444.8000 0.0000
07/11/96 0.0000 0.0000 0.0000 0.0000
07/12/96 0.0000 0.0000 0.0000 0.0000
07/15/96 0.0000 0.0000: 517.8000 0.0000
07/16/96 0.0000 0.0000 0.0000: 1119.9000
07/17/96 2018.6000 0.0000 0.0000 0.0000
07/18/96 0.0000 0.0000 0.0000 100.8000
07/19/96 0.0000 0.0000 0.0000: 2194.2000
07/22/96 0.0000 0.0000 0.0000 0.0000
07/23/96 0.0000 0.0000 0.0000 0.0000
07/24/96 0.0000 0.0000 0.0000 0.0000
07/25/96 0.0000: 1176.0000 0.0000 0.0000

Figure 5. Partial results for a crosstab of daily sales by sales-
person. There are more rows and more columns in the full
result.

In my tests, the crosstab with one row per sales-
person and one column per year varies from about
1/10" of a second to about 1/100% of a second, but

May 2016

the daily sales example takes nearly half a second.
(Note that, in each case, I'm timing only crosstab
generation, not the query that assembles the data.)

FastXTab

Fortunately, there’s a faster way to get crosstabs.
FastXTab was created by Alexander Golovlev
specifically to address VFPXTab’s speed issues.
It's available for download from the Universal
Thread at https://www.universalthread.com/
ShowHeaderDownloadOneltem.aspx?1D=9944.
FastXTabreplaces VFPXTab’slonglist of parameters
(which were a throwback to the program’s non-
OOP origins) with properties. Table 1 shows the
key properties.

Table 1. FastXTab uses properties for configuration.

Property Default value | Purpose

cOutFile “xtabquery” Alias of the
output table or
cursor

Indicates whether
the results are
placed in a table
(.F.) or cursor (.T.)

Indicates whether
the source table
should be closed
after creating the
crosstab

[CursorOnly | .F.

ICloseTable |.T.

nRowField 1 Indicates which
column of the
source table

provides the rows

nColField 2 Indicates which
column of the
source table
provides the

columns

nDataField 3 Indicates which
column of the
source table
provides the data

to be aggregated

Indicates whether
the result should
include an extra
row totaling the
data in the other
rows

ITotalRows .F.

IBrowseAfter | .F. Indicates whether
the result should
be opened in a

Browse window

May 2016

The use of properties makes code that calls
FastXTab easier to read than code that calls
VFPXTab. Listing 7 shows the FastXTab equiva-
lent of Listing 5; it’s based on the same query
(shown in Listing 4) and, of course, produces the
same results. The complete code, including tim-
ing test is included in this month’s downloads as
SalesPersonAnnualSalesFast.prg.

Listing 7. With FastXTab, the options you choose are easy to
understand because you specify them with properties.

oXTab = NEWOBJECT ("fastxtab", "fastxtab.prg")
WITH oXTab AS FastXTab OF "fastxtab.prg"
.cOutFile = "csrXtab"
.1CursorOnly = .T.
.1CloseTable = .T.
.RunXtab ()
ENDWITH

For this example, FastXTab isn't faster than
VEFPXTab. But for the daily sales example, you can
see the major improvement FastXTab offers. Using
the same original query as in Listing 6 and the call to
FastXTab shown in Listing 7, on my computer, the
crosstab is computed in about 2/100* of a second, that
is, more than 2000% faster than with VFPXTab. The
code, including timing test, is included in this month’s
downloads as SalesPersonDailySalesFast.prg.

FastTab 1.6

The additional speed and readability are enough to
make me recommend using FastXTab rather than
VFPXTab. But, as the infomercials say, “wait ...
there’s more.”

Community member Vilhelm-Ion Praisach has
extended FastXTab considerably, both for usability
and to provide additional capabilities. It's included
in this month’s downloads AS FastXTab16.ZIP.
Praisach’s documentation (as well as the latest ver-
sion) can be found at http://praisachion.blogspot.
com/2015/02/fastxtab-version-16.html. The docu-
mentation includes lots of examples; I've broken
those examples out into individual PRGs, which are
included as FastXTab16Demos.ZIP in this month’s
downloads.

Among the things supported in Praisach’s
version are specifying the relevant fields by name
rather than column number; specifying multiple
data columns; specifying the function to apply
to a given data column, including with a custom
expression; and filtering the data source.

All the properties supported by the original
FastXTab remain, but there are quite a few new
properties to provide new capabilities. Table 2
shows some of them.

FoxRockX Page 9

Table 2. FastXTab 1.6 includes many new properties to support
new capabilities.

Property Default | Purpose
value

“y

cRowField Expression from the
source table that

provides the rows

cColField Expression from
the source table
that provides the

columns

cDataField Name of the column
in the source table
that provides

the data to be

aggregated

“y

cPageField Expression from the
source table that

provides “pages”

Indicates how to
aggregate the data;
see Table 3.

nFunctionType |1

cFunctionExp Expression to
use for custom

aggregation

“y

cCondition Filter to apply to
source data before

aggregating

cHaving Filter to apply to

source data after
aggregating

nMultiDataField |1 Indicates how many
data fields are

specified

anDataField Array of data fields
specified by column

position

acDataField Array of data fields

specified by name

anFunctionType Array of aggregation

function choices

acFunctionExp Array of custom

aggregation

expressions

Calling FastXTab 1.6 is the same as calling the
original FastXTab (which I'll refer to as FastXTab
1.0), except that you need to point to the FastXTab
1.6 version of FastXTab.PRG. This month’s down-
loads include SalesPersonAnnualSalesFast16.PRG,
which is identical to SalesPersonAnnualSalesFast.
PRG, except for the path to the class library. In my
tests, it runs just as fast as the FastXTab 1.0 version.

Page 10 FoxRockX

But FastXTab 1.6 lets you do much more.
Suppose you want to know how many sales each
salesperson had in each year. Specifying 2 for the

nFunctionType property indicates Count; Table 3
shows the options for this property.

Table 3. FastXTab 1.6 offers six ways of aggregating the data.

nFunctionType | Meaning
Sum

Count

Average

Min

Max

Custom
expression
specified in
cFunctionExp (or
acFunctionExp
for the relevant
column)

Ol |WIN]|-

The codein Listing 8 (in this month’s downloads
SalesPersonAnnualSalesCountFast16.prg) shows
another cool feature of FastXTab 1.6, the ability to
use an expression to specify the rows or columns
rather than just a field name. To get the correct
results here, we need to see every order, but we want
them counted by year. So the query that gathers the
data keeps the original OrderDate column, but the
.cColField property specifies “YEAR(OrderDate),”
so that the result has one column per year. (In
fact, the data collection query is unnecessary here.
FastXTab could be run directly against the Orders
table.) Figure 6 shows the results.

Listing 8. FastXTab 1.6 lets you specify the aggregation

function to apply, as well as specify expressions for rows and
columns.

SELECT EmployeeID, OrderDate, OrderID ;
FROM Orders ;
INTO CURSOR csrOrders

LOCAL oXTab AS FastXTab OF ;
"fastxtabl6\fastxtab.prg"

oXTab = NEWOBJECT ("fastxtab", ;
"fastxtablé6\fastxtab.prg")
WITH oXTab AS FastXTab OF "fastxtab.prg"
.nFunctionType = 2 && Count

.cRowField = "EmployeeID"
.cColField = "YEAR (OrderDate)"
.cDataField = "OrderID"
.cOutFile = "csrXtab"
.1CursorOnly = .T.
.1CloseTable = .T.
.RunXtab ()

ENDWITH

What if you want to know not just total sales or
the number of sales for each salesperson for each year,

May 2016

Csrxtab iz |&| oXTab = NEWOBJECT(zfaStxtab", ;
. "fastxtabl6\fastxtab.prg")
L Employeeid N_1996 N_1997 N_1998 “ | WITH oxTab AS FastXTab OF :
N 26 55 42 ‘ "fastxtabl6\fastxtab.prg"
B : : T .cRowField = 'EmployeelID'
- 16 41 39 .cColField = 'YEAR (OrderDate)'
3 18 71 38 .nMultiDataField = 3
.acbhataField[1l] = 'OrderTotal'
4 31 81 44 .anFunctionType[l] =1
5 11 18 13 .acDataField[2] = 'OrderTotal'
6 15 33 19 .anFunctionType[2] = 3
.anDataField[3] = 'OrderID'
7 11 36 25 .anFunctionType[3] = 2
8 16 54 31 .cOutFile = "csrXtab"
.1CursorOnly = .T.
9 5 19 19 = .1CloseTable = .F.
.RunXtab ()
I < ’ ENDWITH

Figure 6. Here, the nFunctionType property was set to 2 to count the number of

sales for each employee each year.

but the total sales, the average sale and the number
of sales? With FastXTab 1.6, you can specify multiple
data columns and apply a different aggregation
function to each. To specify multiple data columns,
set nMultiDataField to the number of data columns,
and then populate either anDataField or acDataField
with the list of data columns. If you want different
aggregation for different columns, fill anFunctionType
as well. In Listing 9 (included in this month’s
downloads as SalesPersonAnnualSumAvgCnt.prg),
nMultiDataField is set to 3. The first two columns
use the same field from the source, OrderTotal, but
each applies a different function. Figure 7 shows the
results. There are three columns for each year, one
showing the total, one the average, and one the count.

Listing 9. FastXTab 1.6 lets you specify multiple data columns.

SELECT EmployeeID, Orders.OrderID,
OrderDate, ;
SUM (Quantity*UnitPrice) AS OrderTotal
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID = ;
OrderDetails.OrderID
GROUP BY 1, 2, 3 ;
INTO CURSOR csrOrderTotals

’

’

’

LOCAL oXTab AS FastXTab OF ;
"fastxtabl6\fastxtab.prg"

The previous examples showed
that you can use an expression to
specify the column field. In fact, you
can use an expression for the row
field, too and that expression can be
fairly complex (in either case). Listing 10 inverts the
problem we’ve been looking at, putting employees
in columns and time period in rows. In this case,
each row specifies a quarter, using an expression
that gives a result like 1998_Q1 (for the first quarter
of 1998). Figure 8 shows partial results. This query
is included in this month’s downloads as SalesPer-
sonColsQuarterly.PRG.

Listing 10. The expressions used to specify row and columns
can be complex.

SELECT EmployeeID, Orders.OrderID,
OrderDate, ;
SUM (Quantity*UnitPrice) AS OrderTotal
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID = ;
OrderDetails.OrderID
GROUP BY 1, 2, 3 ;
INTO CURSOR csrOrderTotals

’

’

’

LOCAL oXTab AS FastXTab OF
"fastxtablé6\fastxtab.prg"

’

oXTab NEWOBJECT ("fastxtab", ;
"fastxtablé6\fastxtab.prg")
WITH oXTab AS FastXTab OF ;
"fastxtablé6\fastxtab.prg"

.cRowField = 'PADL (YEAR (OrderDate),4) +

’

[Csrxtab

Employeeid N_1996 N_1996_2 N_1996_3 N_1997

[E=H Eol =

N_1997 2 N_1997_3 N_1998 N 1998 2 N _1998_3 -

38789.0000 1491.885 26 97533.5800

1773.338 55 65821.1300 1567.170 42

22834.7000 1427.169 16 74958.6000

1828.259 41 79955.9600 2050.153 39

19231.8000 1068.433 18 111788.6100

1574.488 71 82030.8900 2158.708 38

53114.8000 1713.381 31 139477.7000

1721.947 81 57594.9500 1308.976 44

21965.2000 1996.836 11 32595.0500

1810.836 18 21007.5000 1615.962 13

17731.1000 1182.073 15 45992.0000

1393.697 33 14475.0000 761.842 19

18104.8000 1645.891 11 66689.1400

1852.476 36 56502.0500 2260.082 25

23161.4000 1219.021 19 59776.5200

1106.973 54 50363.1100 1624.617 31

Wimidionnisiw N

11365.7000 2273.140 5 29577.5500

1556.713 19 42020.7500 2211.618 19

|4

Figure 7.Using the nMultiDataField property, you can get multiple data columns for each value of the specified column field. Here,

there are three columns for each year.

May 2016 Fox

RockX Page 11

" Q" + PADL (QUARTER (OrderDate), 1)’
.cColField = 'EmployeeID'
.nMultiDataField = 3

oXTab = NEWORJECT ("fastxtab", ;
"fastxtabl6\fastxtab.prg")
WITH oXTab AS FastXTab ;

.acDataField[1l] = 'OrderTotal' OF "fastxtablé\fastxtab.prg"
.anFunctionType[l] =1 .cPageField = 'ShipCountry'
.acDataField[2] = 'OrderTotal' .cRowField = 'CategoryName'
.anFunctionType[2] = 3 .cColField = 'YEAR(OrderDate)'
.anDataField[3] = 'OrderID' .cDhataField = 'NumSold'
.anFunctionType[3] = 2 .cOutFile = "csrXtab"
.cOutFile = "csrXtab" .1CursorOnly = .T.
.1CursorOnly = .T. .1CloseTable = .F.
.1CloseTable = .F. .RunXtab ()
.RunXtab () ENDWITH
ENDWITH
C_1996 g3 N 1 Nulm2 N 13 Nu2 Nu2w2
996 Q 14509.4000 1355.400 11 5940.8000 742.600
1996 Q4 23879.6000 1836.892 13: 16893.9000 2111.738
1997 Q1 15330.1000 1703.344 9 7639.3000 848.811
1997 Q2 15520.9000 1552.090 10 25667.5000 2566.750
1997 Q3 33578.4800 1865.471 18 19999.7500 1818.159
1997 Q4 33104.1000 2069.0086 16; 21652.0500 1968.368
1998 Q1 45146.4800 1881.103 24 45101.4100 2653.024
1998 Q2 20674.6500 2067.465 10 34854.5500 2178.409

Figure 8. Each row here represents a quarter and each set of three columns represents an employee.

Both versions of FastXTab support “pages,”
the ability to group rows. (Imagine each “page” as
being a tab in a workbook.) With FastXTab 1.0, you
specify the column that determines “pages” with
the nPageField property. FastXTab 1.6's cPageField
property lets you specify a field name or an
expression, just as you do for rows and columns.
Listing 11 (included in this month’s downloads as
ProductsSold . PRG) shows how many units of each
category were sold and shipped to each country
each year; Figure 9 shows partial results. The
most obvious use for data in this form is making
grouping in a report simpler.

Listing 11. Use cPageField to specify an expression to “page”
by in the crosstab.

SELECT ProductName, CategoryName, ;
OrderDate, ShipCountry, ;
SUM (Quantity) AS NumSold ;
FROM Orders ;
JOIN OrderDetails OD ;
ON Orders.OrderID = OD.OrderID ;
JOIN Products ;
ON OD.ProductID = Products.ProductID ;
JOIN Categories ;
ON Products.CategoryID = ;
Categories.CategoryID ;
GROUP BY 1, 2, 3, 4 ;
INTO CURSOR csrProductsSold

LOCAL oXTab AS FastXTab ;
OF "fastxtabl6\fastxtab.prg"

Page 12

FoxRockX

Shipcountry Categoryname N_1996 N_1997 N_1998
PSSk .M Beverages 3 79

0
Argentina Condiments 0 10 35
Argentina Confections 0 29 28
Argentina {Dairy Products 0 3 51
Argentina :Grains/Cereals 0 0 20
Argentina |Produce 0 19 14
Argentina Seafood 0 30 18
Rustria Beverages 188 335 459
Austria Condiments 184 410 126
RAustria Confections 65 393 117
RAustria Dairy Products 212 430 385
RAustria Grains/Cereals 60 220 300
Austria Meat/Poultry 14 283 65
Austria Produce 99 201 88
Austria Seafood 127 75 331
Belgium Beverages 12 92 168
Belgium Condiments 0 60 87
Belgium Confections 40 123 107
Belgium Dairy Products 65 110 120
Belgium Grains/Cereals 0 67 78
Belgium Meat/Poultry 40 14 35
Belgium Produce 28 50 20

Figure 9. Here, each row represents one category for one
country and each column represents a year. The data is the
number of units of that category shipped to that country in the
specified year.

When you set nFunctionType to 6 (or set
anFunctionType for a particular column to 6), you
can specify a custom aggregation calculation. In
Listing 12, we calculate the ratio of shipping cost
(Freight) to the order total for each month for
each customer. Figure 10 shows partial results;
the code is included in this month’s downloads as
FreightRatio.PRG

May 2016

Listing 12. You can set nFunctionType to 6 and cFunctionExp
to a custom aggregation calculation. Here, it's the ratio of ship-
ping cost to order total.

SELECT CustomerID, Orders.OrderID, ;
OrderDate, ;
SUM (Quantity*UnitPrice) AS OrderTotal, ;
Freight ;
FROM Orders ;
JOIN OrderDetails OD ;
ON Orders.OrderID = OD.OrderID ;
GROUP BY 1, 2, 3, 5 ;
INTO CURSOR csrOrderTotals

LOCAL nStart, nEnd
LOCAL oXTab AS FastXTab ;
OF "fastxtabl6\fastxtab.prg"

oXTab = NEWOBJECT ("fastxtab", ;
"fastxtabl6\fastxtab.prg")
WITH oXTab AS FastXTab ;
OF "fastxtabl6\fastxtab.prg"

In Listing 13, we retrieve data on all orders, but
use only those from one year in the crosstab, which
shows totals for each salesperson for each month.
You might use this approach in a loop to generate a
crosstab for each year. Figure 11 shows the results.
The code is included in this month’s downloads as
SalesPersonMonthlyFilter. PRG.

Listing 13. The cCondition property filters data out of the cur-
sor or table supplied to FastXTab 1.6. Here, we keep only one
year’s data.

SELECT EmployeeID, OrderDate, ;
SUM (Quantity*UnitPrice) AS OrderTotal ;
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID = ;
OrderDetails.OrderID ;
GROUP BY 1, 2 ;
INTO CURSOR csrMonthlyTotals

.cRowField = 'CustomerID' .
.cColField = 'PADL(YEAR (OrderDate),4)' + ; LOCAL oXTab AS FastXTab ;
' + " " 4 DADL (MONTH (OrderDate),2,"0") ' OF "fastxtabl6\fastxtab.prg
.nFunctionType = 6
.cFunctionExp = ; oXTab = NEWOBJECT(:fastxtab", ;)
'SUM (Freight) /SUM (OrderTotal) ' fastxtablé\fastxtab.prg™)
eOuLFile — MesrRtab WITH oXTab AS FastXTab ;
lCursorOnly = .T OF "fastxtabl6\fastxtab.prg"
.lCloseTablZ _ .T. .cRowField = 'EmployeeID'
.RunXtab() U .cColField = 'MONTH (OrderDate)'
ENbWITH .cDataField = 'OrderTotal'
.cCondition = 'YEAR (OrderDate) = 1998'
FastXTab 1.6 lets you filter the data both before igiiéigniyzsritab
and after it's aggregated. Use cCondition to filter .1CloseTable = .T.
before aggregating, and cHaving to filter afterward. -Runxtab ()
ENDWITH
Customerid C_1996 07 C_1996 08 C_1996 09 C_1996_10 C_1996_11
4 0.0000 0.0000 0.0000 0.0000 0.0000
ENATR 0.0000 0.0000 0.0181 0.0000 0.0000
ANTON 0.0000 0.0000 0.0000 0.0000 0.054¢6
AROUT 0.0000 0.0000 0.0000 0.0000 0.0874
BERGS 0.0000 0.0484 0.0000 0.0000 0.0000
BLAUS 0.0000 0.0000 0.0000 0.0000 0.0000
BLONP 0.0470 0.0000 0.0040 0.0000 0.0178
BOLID 0.0000 0.0000 0.0000 0.0793 0.0000
BONAP 0.0000 0.0000 0.0000 0.0665 0.0620
BOTTM 0.0000 0.0000 0.0000 0.0000 0.0000
BSBEV 0.0000 0.0475 0.0000 0.0000 0.0000
CACTU 0.0000 0.0000 0.0000 0.0000 0.0000
CENTC 0.0322 0.0000 0.0000 0.0000 0.0000
CHOPS 0.0368 0.0000 0.0000 0.0000 0.0000
COMMI 0.0000 0.0367 0.0000 0.0000 0.0000
CONSH 0.0000 0.0000 0.0000 0.0000 0.0000

Figure 10. The data here is the ratio of freight cost to order total for a customer for a month.

May 2016

FoxRockX

Page 13

-

Csrxtab [@]="
Employeeid N 1 N_2 N_3 N_4 N_5

» 1 8712.1300: 11586.9000: 24847.4500: 13620.59000: 7053.7500
2 4693.9500; 26056.9000: 14350.5600: 32681.0500: 2173.5000
3 27833.3500: 21540.2400: 18358.3500: 14298.5500 0.0000
4 21029.3000: 11325.0500 8835.3900: 10130.2100; 6275.0000
5 12280.5000 5872.4000 2644 .6000 210.0000 0.0000
6 1975.6000 1953.4000 5206.0000 5340.0000 0.0000
7 6610.0000 6795.5500 7130.8000: 34792.6500: 1173.0500
8 12092.7500 106.0000: 20885.7000: 14055.3000: 3223.3600
9 5627.1400: 19325.5100 7566.6000 9501.5000 0.0000

K ;

Figure 11. This crosstab shows sales for each employee by month for the year specified in the cCondition property.

To demonstrate cHaving, we’ll extend the
freight ratio example. Perhaps you're interested
in seeing only cases where customers seem to be
spending too much on freight charges. Add the line
in Listing 14 inside the WITH clause in Listing 12
to see only cases where a customer’s total monthly
freight charges were more than 5% of the total
orders. This version of the example is included in
this month’s downloads as FreightRatioFiltered.
PRG.

Listing 14. The cHaving property filters after aggregation.
Here, it keeps only data where the ratio of freight to order total
(for the month) is more than 5%.

.cHaving = ;
'SUM (Freight) /SUM (OrderTotal) >= 0.05"'

Summing up

It should be obvious that I recommend FastXTab
1.6 over VFPXTab or FastXTab 1.0. Believe it or not,
FastXTab 1.6 has some additional capabilities not
discussed in this article. If you use crosstabs (or
if you now see how you can use them), I strongly
recommend spending some time not only with the
examples from this article, but with the ones that
Vilhelm-lon Praisach provides.

In my next article, I'll take a look at PIVOT,
SQL Server’s analogue to crosstabs.

Author Profile

Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for businesses
and other organizations. Tamar is author or co-author
of a dozen books including the award winning
Hacker’s Guide to Visual FoxPro, Microsoft Office
Automation with Visual FoxPro and Taming Visual
FoxPro’s SQL. Her latest collaboration is VFPX: Open
Source Treasure for the VFP Developer, available at
www.foxrockx.com. Her other books are available
from Hentzenwerke Publishing (www.hentzenwerke.
com). Tamar was a Microsoft Support Most Valuable
Professional from the program's inception in 1993
until 2011. She is one of the organizers of the annual
Southwest Fox conference. In 2007, Tamar received
the Visual FoxPro Community Lifetime Achievement
Award. You can reach her at tamar@thegranors.
com or through www.tomorrowssolutionsllc.com.

