
October, 2000

Advisor Answers

Function keys and KeyPress Event

Visual FoxPro 6.0, 5.0, 3.0

Q: I'm trying to use F10 to do a method within my form. I don't want
to use ON KEY LABEL to set my function keys for design reasons. I'm

using the form's KeyPress event to capture which function key is
pressed. I had to SET HELP OFF so that I could use F1. When F10 is

pressed, the KeyPress Event doesn't fire and the focus goes to the first
option on the menu. Is there something I can do to set F10 off?

Thanks in advance for your help.

–Daniel Reber (via www.Advisor.com)

A: Before I offer a solution, I have to question the wisdom of what
you're doing. F10 is universally defined in Windows as the menu

activation key. That's why focus goes to the first option on the menu.

Try this in any application that conforms to the Windows Interface

Guidelines and you'll find that pressing F10 highlights the first menu

item. It's a way that a user without a mouse can get to the menu.
While you might ask why someone would use Windows without a

mouse, keep in mind first that there are disabled users who cannot
use a mouse and second, that at one time or another, we've all run

into situations where a mouse driver or the mouse itself fails and we're
stuck without a mouse temporarily. In addition, some users simply

prefer to work from the keyboard. That's why the Windows Interface
Guidelines require that every mouse action have a keyboard

equivalent – in fact, it's referred to as a "fundamental principle." (You
can find the latest version of the Guidelines online beginning at

http://msdn.microsoft.com/library/books/winguide/welcome.htm.)

For similar reasons, I'm concerned about your decision to override F1

as the Help key. F1 was established as the universal key for Help even
before Windows became ubiquitous. To use it for any other action

seems like a poor design choice.

If your application is aimed primarily at data-entry operators, you also
may want to rethink the whole question of using the function keys at

all. In order to hit the function keys, the user must remove her hands
from the home row of the keyboard. In an application where the user

http://msdn.microsoft.com/library/books/winguide/welcome.htm

spends most of her time entering data, it's best if the hands never

leave the keyboard (yet another reason to offer keyboard equivalents
for all operations). This kind of application similarly shouldn't include

complex controls – entry should use text boxes and edit boxes with
nothing that requires the user to take her eyes off the source

document that contains the input data.

By now, you're probably asking what I recommend rather than the

function keys? The answer is menu shortcuts. Put the operations on a
menu popup and give each a shortcut using the Options dialog.

Ctrl+key combinations are traditional for menu items; Alt+key
combinations are generally reserved for menu pads on the main menu

bar. Regular users will quickly learn the shortcuts for the items they
use all the time. You can also provide a hot key (that is, an underlined

character) for each item to speed keyboard use for those who prefer to
drop the menu popup open first. If you want to offer mouse users a

shortcut as well, create a custom toolbar with a button for each

frequently used item. The SYS(1500) function lets you tie buttons right
into menu items. (See last month's ADVISOR Answers for more on

that function.)

In case I still haven't convinced you not to use function keys, there is

a solution, but it's not particularly attractive. You do have to use ON
KEY LABEL (or the even older SET FUNCTION). In order to keep all

your function key code together, though, my recommendation is to
have the ON KEY LABEL change the output from F10 rather than

calling the method directly. You can do that with code like:

ON KEY LABEL F10 KEYBOARD "{Shift+F11}" PLAIN

I chose Shift+F11 because it doesn't have any predefined meaning,
but you can choose any key you want, with a few exceptions,

discussed below. Be sure to add the PLAIN keyword in case the key

combination has already been assigned a macro somewhere.

Once you redefine F10, you can then process it in the KeyPress

method along with the other function keys. Just be sure to check for
the keycode of the replacement keystroke, not the -9 that F10

generates. When using Shift+F11 you have to check the nShiftAltCtrl
parameter, as well, because this particular combination has the ANSI

code 135 that corresponds to the lowercase "ç", a common French
character. Also, remember to set the form's KeyPreview property to .T.

so that a keystroke on any control triggers the form's KeyPress event
before the control's KeyPress event.

F1 and F10 aren't the only function keys that have meanings in

Windows. Shift+F10 opens the context (right-click) menu. Ctrl+F10
maximizes the current window. Alt+F4 closes the current application.

There are a number of others, as well. When you redefine F10, you'd
be well-advised to stay away from those.

Since Visual FoxPro 5.0, KeyPress code doesn't fire for any key
combination that includes ALT. While the KeyPress event itself fires in

the event log, the code within is not executed. That's probably because
ALT key combinations trigger a different Windows message;

WM_SYSKEYUP/DOWN instead of WM_KEYUP/DOWN.

Overall, I'm less happy with this solution than using a menu shortcut

because ON KEY LABELs are interrupts that can be executed at any
time. If you feel you must go this route, set the OKL up as late as

possible and turn it off as soon as you can.

—Tamar

