
May 2010	 FoxRockX� Page 13

Several issues back, I wrote about the Toolbox,
a cool tool added in VFP 8 that makes designing
forms and classes much easier. Like many other
VFP tools, the Toolbox was written with VFP and
was designed with extension in mind. This month,
I want to show you how simple some changes to
the Toolbox are, so you can customize it for your
needs.
I'll start with a look at the Toolbox's infrastructure;
not surprisingly, it uses some tables. Then, I'll look
at two kinds of changes you can make without
touching the core Toolbox code.

Under the hood of the Toolbox
The Toolbox has five components: user interface,
engine, tool classes, data and metadata. The user
interface, the engine and the tool classes are written
in VFP. You have the source code. If you haven't
already done so, unzip XSource.ZIP in the Tools\
XSource folder of your VFP installation. After
you do so, you'll find the Toolbox code in the
VFPSource\Toolbox folder.

The Toolbox engine code is in ToolboxEngine.
PRG. If you take a look at this
code, you'll find a variety of
methods, some corresponding
to the various actions you can
take in the Toolbox, others
more fundamental.

The Toolbox UI code is in
a number of classes. The main
Toolbox form is defined by
the ToolboxForm class in the
FoxToolbox library. The same
classlib contains classes for
many other UI elements, as
does toolboxctrls.vcx.

The Toolbox sees the
world in terms of categories
and tools; everything in the
Toolbox is one or the other. Each type of category
or tool is implemented by a class. All of the im-
plementation classes are based on the _root class,
contained in _toolbox.vcx. The _root class contains
methods that provide the basic functionality for
any item in the Toolbox; some of the methods are

abstract here, others call on the Toolbox engine,
while others work with a collection of properties
for the particular tool.

The same class library contains many subclasses
of _root. Some are abstract, like _root, while others
implement a particular tool type. The File tool type
is actually implemented by a number of different
classes, representing different kinds of files.

The _toolbox.vcx class library is excluded
from the Toolbox project. A copy is installed in the
Toolbox folder of your VFP installation. Excluding
it makes it possible to make changes and additions
without having to rebuild the Toolbox application.

Later in this article, I'll show you how to define a
new tool type by creating a new subclass of _root.

The Toolbox uses two tables. The first is Toolbox.
DBF, stored in the VFP folder of the Documents
and Settings hierarchy (the folder referenced by
HOME(7)). This table contains one record for each
tool in the Toolbox, that is, one for each category
and one for each item. Figure 1 shows part of
my Toolbox table; these entries are among those
supplied with the tool.

The Toolbox table also contains data for filters
you create and for add-ins, which include custom
menu items. I'll show you how to create custom
menu items later in this article.

Extending the Toolbox
The Toolbox was designed to allow various kinds of extensions. Among
other things, you can add your own item types and menu items.

Tamar E. Granor, Ph.D.

Figure 1. The Toolbox table contains one record for each thing
in the Toolbox, whether category or item.

Page 14	 FoxRockX� May 2010

The other table is ToolType.DBF, stored in the
Toolbox folder of your VFP installation; it maps
tools to the classes that implement them. Each
record represents one type or category, tool or file.
For example, Figure 2 shows that the _SCRIPT tool
is implemented by the _ScriptTool class.

To modify Toolbox behavior, you can make
changes to any of the components. What's great is
that you can make a number of changes without
having to touch the UI or engine code. The rest of
this article looks at two such changes.

Adding a tool type
Although the Toolbox includes five
types of items, and the file type is
pretty broad, you might have other
kinds of things you want to include
in the Toolbox with their own behav-
iors. It turns out that adding new item
types is fairly simple.

One of the projects I'm working on
uses a Wiki and an online bug tracking
system. While I have shortcuts in my
browser for each of those sites, having
them accessible from within VFP
seems pretty useful. You can use a File
type item for a link, but getting it set
up right is a little tricky. So I decide to
add a special Link type.

To add a new item type, you need to add a
record to ToolType and create a class to handle it.
Because _toolbox.vcx is excluded from the Toolbox
project, you can add the new class in this library
without otherwise affecting the Toolbox code.

Since the Toolbox already knows what to do if
you specify a link for a File item (it opens the page in
the default browser), base the new class on the one
used for files (called _FileTool). As Figure 3 shows,
_FileTool is several subclasses below _root in the
hierarchy. It handles all the functionality common
to the File data item and is further subclassed for
functionality specific to a type of file.

The only thing the new class has to do differently
is provide a way to add links easily. That comes
down to modifying the Item Properties form, so
that it provides a textbox to enter the URL rather
than prompting for a filename.

It took some digging into the Toolbox code to
figure out what had to change. The Item Proper-
ties dialog bases its contents on a collection called
oDataCollection. The OnCreateDataValues method
of _FileTool adds an item to the collection to handle
the filename, specifying that it should use a con-
trol class called cfoxfilename. The line of code from
_FileTool.OnCreateDataValues that sets this up is
shown in Listing 1.

Listing 1. This line adds the controls for the filename to the
Item Properties dialog for a File item.
THIS.AddDataValue("filename", '', ;
 DATAVALUE_FILENAME_LOC, ;
 '', .F., "cfoxfilename", '')

For the link-handling class, you want an
ordinary textbox instead of the textbox and button
combination that cfoxfilename specifies. That class
comes from ToolboxCtrls.VCX, which also contains
a regular textbox class called cfoxtextbox. Use that
one instead for our link class.

So, create a subclass of _FileTool and call
it _LinkTool. Then, in its OnCreateDataValues Figure 3. The tool classes used in the Toolbox all derive from a

conmon ancestor, _root.

Figure 2. The ToolType table maps tools to the subclasses of
_root that implement them.

May 2010	 FoxRockX� Page 15

methods, replace the cfoxfilename control with a
cfoxtextbox. Listing 2 shows the code that does the
trick. Rather than overriding the code in _FileTool.
OnCreateDataValues (which does some other things
as well), modify the member of oDataCollection to
have the value you want. This code also modifies
the caption used next to the text. You'll also need to
add the line in Listing 3 to the Toolbox.H file.

Listing 2. The new _LinkTool class has code in only one
method, OnCreateDataValues.
#include "toolbox.h"

DODEFAULT()

* custom to the _linktool, modify the info
* for the filename item
WITH This.oDatacollection("FILENAME")
 .DataCaption = DATAVALUE_LINK_LOC
 .EditClass = "cFoxTextBox"
ENDWITH

Listing 3. Add this line to Toolbox.H to make the code in Listing
2 work.
#DEFINE DATAVALUE_LINK_LOC
"Link"

With the code done, all you have
to do is add a record to ToolType.
DBF to make the whole thing work.
Figure 4 shows data for this record.
Classname points to the new _LinkTool
class. Because it's in the _Toolbox.VCX
classlib, you don't need to fill in the
Classlib field; that's the default. Setting
ShowNew to .T. ensures that this type
will show up in the Add Item dialog.
Setting PropSheet to .T. causes the Item
Properties dialog to appear as part of
the process of adding an item.

Figure 4. Add this record to the ToolType table to set up the
Link tool.

Once you've made these changes, when you
choose Add Item from the Customize Toolbox
dialog, the Add Item dialog includes the Link type
(Figure 5). When you choose the Link type, the
Item Properties dialog appears, with a textbox for
entering the link (Figure 6). When you've added a
link, you can click on it to open the page in your
browser; the Toolbox is even smart enough to use
a link icon for it.

Figure 5. After adding the record in Figure 4 to the ToolType
table, the Add Item dialog includes the Link type.

Figure 6. The Item Properties dialog for the new Link type in-
cludes a textbox to enter the URL.

Add items to the context menu
I've never quite understood why you can add class
libraries to the Toolbox from the context menu, but
have to open the Customize Toolbox dialog to add
other kinds of items. Once I'd created the Link tool
type, I decided to figure out how to access it with-
out using the Customize Toolbox dialog. It turns
out that the Toolbox supports an add-in mechanism
that lets you add items to the shortcut menus.

Add-ins are stored in the main Toolbox data
table, Toolbox.DBF. By default, there are no add-
ins, but you can set them up.

An add-in for a shortcut menu item needs only
a few fields of the Toolbox table filled in: UniqueID,
ShowType, ToolName and ToolData.

Page 16	 FoxRockX� May 2010

UniqueID is the item's primary key. The Tool-
box uses a two-part naming scheme for UniqueID.
All categories have UniqueID values in the form
"Microsoft.CategoryName." The built-in items
have UniqueID values in the form "CategoryName.
ItemName." Items you add through the Toolbox's
interface have UniqueID values in the form "User.
SYS2015value." I recommend that when you add
items manually, you use a similar format with the
first part identifying you (or your company) and
the second part identifying the item. So, for the
Add link menu item, I'll use "TSLLC.AddLink" as
the UniqueID.

ShowType indicates the type of item the record
represents. It contains "C" for category, "T" for "tool
item," and so forth. For an add-in, use "A".

ToolName is the name used for the item in the
Toolbox. For a menu item, put the text you want in
the menu. For the Add link menu item, put "Add
link" of course.

Finally, ToolData is the field that provides
functionality. For an add-in, you put code to run
when the add-in is chosen. For the Add link menu
item, I modified code I found in the CreateToolItem
method of the ToolboxEngine class; the modified
code is shown in Listing 4.

Listing 4. This code implements the Add link menu item. It's
stored in the ToolData memo field of the add-in's record in
Toolbox.DBF.
LPARAMETERS oCurrentItem

LOCAL oEngine, oToolItem, oCategory, ;
 oToolType, lSuccess

oEngine = oCurrentItem.oEngine

oCategory = oEngine.CurrentCategory

oToolType = oEngine.GetTooltypeRec("LINK")
IF NOT ISNULL(m.oToolType)
 m.lShowPropertySheet = ;
 m.oToolType.PropSheet
 m.cClassName = m.oToolType.ClassName
 m.cClassLib = m.oToolType.ClassLib
 IF EMPTY(m.cClassLib)
 m.cClassLib = oEngine.DefaultClassLib
 ENDIF

 TRY
 m.oToolItem = ;
 NEWOBJECT(m.cClassName, m.cClassLib)
 CATCH TO oException
 MESSAGEBOX(oException.Message + ;
 CHR(10) + CHR(10) + ;
 m.cClassName + ;
 "(" + m.cClassLib + ")", ;
 MB_ICONEXCLAMATION, ;
 TOOLBOX_LOC)
 ENDTRY

 IF VARTYPE(m.oToolItem) == 'O'
 WITH m.oToolItem
 .oEngine = m.oEngine
 .ToolTypeID = m.oToolType.UniqueID
 .ToolType = m.oToolType.ToolType
 .ClassName = m.cClassName

 .ClassLib = ;
 IIF(m.cClassLib == ;
 oEngine.DefaultClassLib, ;
 '', m.cClassLib)
 ENDWITH

 IF m.lShowPropertySheet
 IF !oToolItem.Properties(.T.)
 m.oToolItem = .NULL.
 ENDIF
 ENDIF

 IF !ISNULL(m.oToolItem)
 WITH m.oToolItem
 .ParentID = oCategory.UniqueID
 ENDWITH

 lSuccess = ;
 oEngine.NewItem(m.oToolItem)
 ENDIF

 ENDIF

ENDIF

RETURN m.lSuccess

Once you've added the record to the Toolbox
table and reopened the Toolbox, you can see the
Add Link menu item when you right-click over an
item or category. Unfortunately, it doesn't appear
when you right-click over an empty space; chang-
ing that behavior would require changes to the core
Toolbox code.

If you'd like to have a shortcut menu item for
adding text scraps, you can do it the same way.
Just change the UniqueId and ToolName fields,
and modify the code for ToolData to use the string
"TEXTSCRAP" instead of "LINK" in the call to Get-
ToolTypeRec.

Adding a shortcut menu item to add files is dif-
ferent, though. When you add a file, you want the
GetFile() dialog to appear so you can point to the
file rather than the Item Properties dialog. I found
the right code in the AddTool method of the form
ToolboxCustomize and modified it as in Listing 5.

Listing 5. Adding a file is actually easier than adding other
items. Put this code in ToolData for a shortcut menu item to add
files.
LPARAMETERS oCurrentItem

LOCAL oEngine, oToolItem, oCategory, ;
 oToolType, lSuccess

oEngine = oCurrentItem.oEngine

oCategory = oEngine.CurrentCategory

m.cFilename = GETFILE()
IF !EMPTY(m.cFilename)
 m.lSuccess = ;
 oEngine.CreateToolsFromFile(;
 oCategory.UniqueID, m.cFilename, .T.)
ENDIF

RETURN m.lSuccess

May 2010	 FoxRockX� Page 17

Although it's not relevant for these menu items,
you can specify that a particular shortcut menu
item appears only for a particular item type. To do
so, put the item type in the ToolTypeID column.

Try it yourself
I hope the examples here inspire you to experiment
with behavior changes you'd like in the Toolbox.
They turn out to be surprisingly easy to make. The
hardest part, in my experience, is finding code in
the Toolbox that gives you a place to start.

Like the other Xbase tools, the Toolbox is in-
cluded in VFPX, so please consider sharing your
modifications with the VFP community.

This month's downloads include the updated
_Toolbox.VCX class library with the _LinkTool
class, the updated ToolType.DBF table containing a
record for the new Link type, and AddMenuItems.
PRG, a program that adds three new items (Add

Link, Add Text Scrap and Add File) to the Toolbox
context menu.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced
numerous Visual FoxPro applications for businesses and
other organizations. She currently focuses on working with
other developers through consulting and subcontracting.
Tamar is author or co-author of ten books including
the award winning Hacker’s Guide to Visual FoxPro,
Microsoft Office Automation with VisualFoxPro and
Taming Visual FoxPro’s SQL . Her latest collaboration
is Making Sense of Sedna and SP2, coming out this year.
Her books are available from Hentzenwerke Publishing
(www.hentzenwerke.com). Tamar is a Microsoft Support
Most Valuable Professional. In 2007, Tamar received the
Visual FoxPro Community Lifetime Achievement Award.
You can reach her at tamar@thegranors.com or through
www.tomorrowssolutionsllc.com.

FoxRockX™(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor: Rainer Becker

Copyright © 2010 ISYS GmbH. This work is an independently produced
publication of ISYS GmbH, Kronberg, the content of which is the property
of ISYS GmbH or its affiliates or third-party licensors and which is protected
by copyright law in the U.S. and elsewhere. The right to copy and publish
the content is reserved, even for content made available for free such as
sample articles, tips, and graphics, none of which may be copied in whole
or in part or further distributed in any form or medium without the express
written permission of ISYS GmbH. Requests for permission to copy or
republish any content may be directed to Rainer Becker.

FoxRockX, FoxTalk 2.0, FoxTalk and Visual Extend are trademarks of ISYS GmbH. All product names
or services identified throughout this journal are trademarks or registered trademarks of their respective
companies.

DOWNLOAD
Subscribers can download FR201005_code.zip in the SourceCode sub directory of the
document portal. It contains the following files:

doughennig201005_code.zip
Source code for the article “Practical Uses for GDIPlusX Part I” from Doug Hennig

tamargranor201005_code.zip
Source code for the article "Extending the Toolbox" from Tamar E. Granor

tonifeltman 201005_code.zip
Source code for the article "Dating with DBI" from Toni M. Feltman

