
Page 8	 FoxRockX� September 2015

Extend your queries with
APPLY
SQL Server offers a way to combine tables with table-valued functions, and to
create the equivalent of correlated derived tables.

Tamar E. Granor, Ph.D.

As I’ve been digging into SQL syntax that’s not sup-
ported in VFP, I’ve been able to understand what
most of the language elements do, even when I’ve
struggled to find meaningful examples. But getting
my head around the APPLY operator took a look of
effort, trials and research.
It was worth it, though, because CROSS APPLY
and OUTER APPLY offer useful capabilities. I’m
hopeful that I can explain and demonstrate in a
way that makes your journey easier than mine was.

Start with CROSS JOIN
The best way to understand what CROSS APPLY
does is to start with the idea of a cross join, also
known as a Cartesian join. That’s a join where each
record in the first table is matched with each record
in the second table. It’s almost always something to
avoid, but there are a few cases where it’s useful.

Visual FoxPro doesn’t have direct syntax for
cross joins, but you can use them by specifying
tables without a join condition. For example, sup-
pose you want to get a list of all months for a period
of years (that is, one record for each month for each
specified year). If you already have a cursor con-
taining years and another containing the months,
you could use a query like that in Listing 1 to com-
bine them.

Listing 1. Cross joins are useful for building a data set from a
set of “building blocks.”
SELECT cMonth, nYear ;
 FROM csrMonths, ;
 csrYears ;
 INTO CURSOR csrEveryMonth

SQL Server supports cross joins directly with
the CROSS JOIN syntax. The SQL Server query
equivalent to Listing 1 is shown in Listing 2. Partial
results are shown Figure 1; the #Years table in this
case contains all the values from 2001 to 2015.

Listing 2. SQL Server includes CROSS JOINs directly.
SELECT cMonth, nYear
 FROM #Months
 CROSS JOIN #Years

I chose this example intentionally because
ensuring that data is shown for every month is one
of the few cases where I’ve actually used a cross
join. For something like creating a data warehouse,
you might use a cross join to match every employee
with every product, so that your data contains all
possible combinations.

APPLY vs. JOIN
With the idea set that the CROSS keyword means
match all items on both sides, we can move on to
APPLY. What makes APPLY powerful is that it can
be “correlated,” that is, the item on the right can be
defined using one or more fields from the item on
the left. An “item” here can be a derived table or a
table-valued function. Normally, the definition of a
derived table can’t refer to fields from another table
in the main query.

Figure 1. CROSS JOIN matches every record in the first table
with every record in the second table.

September 2015	 FoxRockX� Page 9

One place this ability is useful is in providing
an alternative approach to finding the top N items
in each group. I showed one solution to that prob-
lem in the May, 2014 issue; that approach uses the
OVER clause with the RANK function.

With CROSS APPLY, we can take a more direct
route to the “top N per group” problem. Listing
3 shows how to find the 5 employees who most
recently joined each department; it’s included in this
month’s downloads as MostRecentEmpsByDept.
SQL. The derived table finds the five most recent
employees for a specific department; the WHERE
condition in the subquery limits it to the depart-
ment that’s currently being considered in the outer
query. CROSS APPLY then matches all five of those
records to the current department record.

Listing 3. One use for CROSS APPLY is to find the TOP N
records in each group.
SELECT Name, FirstName, LastName, StartDate
 FROM HumanResources.Department Dept
 CROSS APPLY
 (SELECT TOP 5 FirstName, LastName,
 StartDate
 FROM HumanResources.Employee Emp
 JOIN
 HumanResources.EmployeeDepartmentHistory EDH
 ON Emp.BusinessEntityID =
 EDH.BusinessEntityID
 JOIN Person.Person
 ON Emp.BusinessEntityID =
 Person.BusinessEntityID
 WHERE EDH.DepartmentID =
 Dept.DepartmentID
 AND EndDate IS NULL
 ORDER BY StartDate DESC) csrDeptTop

In my tests, this version and the version using
OVER (included in this month’s downloads as
NewestEmployeesByDept.SQL) are equally speedy.
Some of the resources I used to learn about CROSS
APPLY indicate that it’s usually faster than the
OVER solution.

APPLY seems even more natural if we want to
choose the top N percent for each group. Imagine
that instead of finding the 5 employees who joined
a department most recently, you want to find the
most recent 5%. Just add the PERCENT keyword
to the derived table in Listing 3 and you’re set.
Listing 4 (including in this month’s downloads as
MostRecentEmpsByDeptPercent.sql) shows the
query. Figure 2 shows partial results.

Listing 4. APPLY works well for finding the top N percent for
each group.
SELECT Name, FirstName, LastName, StartDate
 FROM HumanResources.Department
 CROSS APPLY
 (SELECT TOP 5 PERCENT
 FirstName, LastName, StartDate
 FROM HumanResources.Employee
 JOIN
 HumanResources.EmployeeDepartmentHistory EDH
 ON Employee.BusinessEntityID =
 EDH.BusinessEntityID
 JOIN Person.Person

 ON Employee.BusinessEntityID =
 Person.BusinessEntityID
 WHERE EDH.DepartmentID =
 Department.DepartmentID
 AND EndDate IS NULL
 ORDER BY StartDate DESC) csrDeptTop

In SQL Server 2012 and later, you can accom-
plish almost the same thing with OVER and
the PERCENT_RANK function (shown in List-
ing 5 and included in this month’s downloads as
NewestEmployeesByDeptPercent.SQL), but in ear-
lier versions, you’d have to use RANK and do some
arithmetic to find the top five percent.

Listing 5. SQL Server 2012 and later let you find top N percent
for each group using OVER and PERCENT_RANK.
WITH EmpRanksByDepartment AS
(SELECT FirstName, LastName, StartDate,
 Department.Name AS Department,
 PERCENT_RANK() OVER
 (PARTITION BY Department.DepartmentID
 ORDER BY StartDate Desc)
 AS EmployeeRank
FROM HumanResources.Employee
 JOIN HumanResources.EmployeeDepartmentHistory
 EDH
 ON Employee.BusinessEntityID =
 EDH.BusinessEntityID
 JOIN HumanResources.Department
 ON EDH.DepartmentID =
 Department.DepartmentID
 JOIN Person.Person
 ON Employee.BusinessEntityID =
 Person.BusinessEntityID
 WHERE EndDate IS NULL)

 SELECT FirstName, LastName, StartDate,
 Department
 FROM EmpRanksByDepartment
 WHERE EmployeeRank <= 0.05
 ORDER BY Department, StartDate desc ;

The queries in Listing 4 and Listing 5 do not
return identical data sets. Because of the way
PERCENT_RANK handles ties, Listing 5 returns
one more record. The speed of the two queries is
identical in my tests.

Figure 2. CROSS APPLY lets you find the first N% for each group.

Page 10	 FoxRockX� September 2015

APPLY with table-valued
functions
APPLY is particularly useful when you have a
table-valued function and want to join its results
with a table. As its name implies, a table-valued
function is a function stored in the database that
returns not a single value, but a table. It may return
one record with multiple fields or multiple records
of one or more fields.

A table-valued function can appear on the right
side of the APPLY operator; each record returned
is joined to each record of the table on the left side
of APPLY.

For example, suppose you want to find the
top five products in sales for each month. As
with the previous example, you can do this using
OVER with RANK(); Listing 6 shows such a
query; it’s included in this month’s downloads as
Top5ProductsByMonth.SQL.
Listing 6. You can use OVER and RANK() to find the top-
selling products for each month.
WITH MonthlyProductSales(iProductID, nMonth,
 nYear, nSales)
AS
(SELECT SOD.ProductID, MONTH(OrderDate),
 YEAR(OrderDate), SUM(LineTotal)
 FROM [Sales].[SalesOrderDetail] SOD
 JOIN [Sales].[SalesOrderHeader] SOH
 ON SOD.SalesOrderID = SOH.SalesOrderID
 GROUP BY ProductID,
 MONTH(OrderDate), Year(OrderDate)),

RankedProductSales(iProductID, nMonth, nYear,
 nSales, nRank)
AS
(SELECT MonthlyProductSales.*,
 RANK() OVER (
 PARTITION BY nMonth, nYear
 ORDER BY nSales DESC)
 FROM MonthlyProductSales)

SELECT nMonth, nYear,
 iProductID, Name, nSales
 FROM RankedProductSales
 JOIN Production.Product
 ON RankedProductSales.iProductID =
 Product.ProductID
 WHERE nRank <= 5
 ORDER BY nYear, nMonth, nRank ;

But APPLY gives us another approach, extract-
ing the top five products one month at a time and
joining them to the other information we want. List-
ing 7 shows a query analogous to the one in Listing 3,
though more complex; it’s included in this month’s
downloads as Top5ProductsByMonthCrossApply.
SQL. The first CTE computes monthly sales for each
product, while the second provides a list of all the
month and year combinations included in the data.
The innermost derived table (on the right-hand side
of CROSS APPLY) finds the top five products for
the month and year specified for the current record
from csrProductSalesByMonth. The middle-level
derived table performs the cross apply. Finally, the
outer query adds the name of each product. Figure
3 shows partial results.

Listing 7. Once again, CROSS APPLY provides an alternate
approach to finding the top N for each group.
WITH csrProductSalesByMonth
AS
(SELECT SOD.ProductID,
 MONTH(OrderDate) AS nMonth,
 YEAR(OrderDate) nYear,
 SUM(LineTotal) AS nSales
 FROM [Sales].[SalesOrderDetail] SOD
 JOIN [Sales].[SalesOrderHeader] SOH
 ON SOD.SalesOrderID = SOH.SalesOrderID
 GROUP BY ProductID,
 MONTH(OrderDate), YEAR(OrderDate)),

csrMonths
AS
(SELECT DISTINCT Month(OrderDate) AS nMonth,
 YEAR(OrderDate) as nYear
 from Sales.SalesOrderHeader)

SELECT nMonth, nYear, Product.ProductID,
 Name, nSales
 FROM Production.Product
 JOIN (
 SELECT csrTopSales.ProductID,
 csrMonths.nMonth,
 csrMonths.nYear,
 nSales
 FROM csrMonths
 CROSS APPLY
 (SELECT TOP 5 ProductID, nMonth,
 nYear, nSales
 FROM csrProductSalesByMonth
 WHERE csrProductSalesByMonth.nMonth
 = csrMonths.nMonth
 AND csrProductSalesByMonth.nYear =
 csrMonths.nYear
 ORDER BY nSales desc) csrTopSales
) csrAllTopSales
 ON Product.ProductID =
 csrAllTopSales.ProductID
 ORDER BY nYear, nMonth, nSales DESC;

While that query works, it’s also pretty unwieldy.
To make it easier to work with, we can replace the
innermost derived table with a call to a table-valued
function. If we need the top-selling products for a
given month as part of multiple queries, then having
such a function in the database allows us to avoid
writing the same query repeatedly, as well.

First, we need to create the function. Listing
8 (CreateTopProductSalesFunctionInline.SQL in
this month’s downloads) shows the code to do so.
It has three parameters: the month, the year, and

Figure 3. The query in Listing 7 uses CROSS APPLY to find the five
top-selling products for each month.

September 2015	 FoxRockX� Page 11

the number of products to return. It returns a table
with two columns: the product ID and the sales of
that product for the specified month. Note that it
actually handles both the computation of the total
sales (done by the CTE in Listing 7) and choosing
the top N.

Listing 8. We can store a function in the table to compute the
top-selling products for a month. It returns a table.
CREATE FUNCTION
 dbo.TopProductSalesForMonthInline
 (@nMonth Int, @nYear Int,
 @nHowMany SmallInt)
RETURNS TABLE AS
RETURN
(SELECT TOP (@nHowMany) ProductID, nSales
 FROM (
 SELECT SOD.ProductID,
 MONTH(OrderDate) AS nMonth,
 YEAR(OrderDate) nYear,
 SUM(LineTotal) AS nSales
 FROM [Sales].[SalesOrderDetail] SOD
 JOIN [Sales].[SalesOrderHeader] SOH
 ON SOD.SalesOrderID =
 SOH.SalesOrderID
 WHERE MONTH(OrderDate) = @nMonth
 AND YEAR(OrderDate) = @nYear
 GROUP BY ProductID,
 MONTH(OrderDate),
 YEAR(OrderDate)
) MonthlyProductSales
 ORDER BY nSales DESC)

Once the function exists, we can use it in a
query, as in Listing 9. There’s still a CTE to get the
list of months, but the main query is just a single
CROSS APPLY—no derived tables at all. This
query is included in this month’s downloads as
Top5ProductsByMonthCrossApplyFunctionInline.
SQL

Listing 9. Using the table-valued function, the query to find the
top 5 products for each month becomes much simpler.
WITH csrMonths (nMonth, nYear)
AS
(SELECT DISTINCT MONTH(OrderDate),
 YEAR(OrderDate)
 FROM Sales.SalesOrderHeader)

SELECT nMonth, nYear,
 TPS.ProductID, Name, nSales
 FROM csrMonths
 CROSS APPLY
 dbo.TopProductSalesForMonthInline(
 csrMonths.nMonth, csrMonths.nYear,5) TPS
 JOIN Production.Product
 ON TPS.ProductID = Product.ProductID
 ORDER BY nYear, nMonth, nSales DESC

Note that the function created here is what’s
called an “inline function”; that’s why its name
includes “Inline.” The performance of the query
using the inline function is pretty much the same
as the performance of the version using CROSS
APPLY with a derived table. In my tests, both are a
little faster than the OVER version.

However, my first attempt at using a table-
valued function was much slower. That func-
tion (CreateTopProductSalesFunction.sql in this

month’s downloads contains code to create it) cre-
ated what’s called a multi-statement function. An
inline function involves a single query wrapped
in RETURN, while a multi-statement function has
multiple commands wrapped in a BEGIN/END
pair. In this test and others, it’s clear that using an
inline function with APPLY can boost performance,
while a multi-statement function is likely to slow
things town.

My reading also suggests that the relative
speed of the three approaches depends a lot on
what indexes are available; see the resources at the
end of this article for some reading on that topic.

Is APPLY good for anything other
than TOP N?
All the examples we’ve looked at so far provided
alternate ways to find the top N records in each
group. While that’s the easiest example, not to men-
tion the most commonly used in articles, APPLY
does have other uses.

One is to calculate multiple values for each
record to be matched. For example, suppose you
want to know how many of each product a customer
bought in a given period, and how much she spent
total on each product. (I can imagine collecting this
data to populate a data warehouse, for example.)
You could do this with a CTE and some joins, as
in Listing 10 (included in this month’s downloads
as CustomerSalesByProductJoin.SQL). Figure 4
shows partial results.

Listing 10. You can use a CTE to find out how many of each
product each customer bought in a specified year.
WITH csrSalesByCustProd
 (CustomerID, ProductID,
 ProductCount, ProductTotal)
AS
(SELECT CustomerID, ProductID,
 COUNT(*), SUM(LineTotal)
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 WHERE YEAR(OrderDate) = 2011
 GROUP BY CustomerID, ProductID)

SELECT Customer.CustomerID,
 FirstName, LastName,
 csrSalesByCustProd.ProductID, Name,
 ProductCount, ProductTotal
 FROM Sales.Customer
 JOIN csrSalesByCustProd
 ON Customer.CustomerID =
 csrSalesByCustProd.CustomerID
 LEFT JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 LEFT JOIN Production.Product
 ON csrSalesByCustProd.ProductID =
 Product.ProductID
 ORDER BY CustomerID, ProductID;

Alternatively, you can use CROSS APPLY
with either a derived table or a table-valued
function to do the same thing. Listing 11

Page 12	 FoxRockX� September 2015

shows the code to create an inline table-valued
function, included in this month’s downloads as
CreateCustomerProductSalesForYearFunctionInline.
SQL. Listing 12 shows the query that uses the
function; it’s included in this month’s downloads as
CustomerSalesByProductFunction.SQL. In my tests,
all three versions (CTE, CROSS APPLY with derived
table, CROSS APPLY with inline table-valued
function) give results within a few milliseconds of the
same time. (The derived table version is included in
this month’s downloads as CustomerSalesByProduct.
SQL, but is not shown here.)

Listing 11. The function created here returns a table contain-
ing the sales of each product for the specified customer in the
specified year.
CREATE FUNCTION
 dbo.CustomerProductSalesForYear2
 (@CustomerID INT, @nYear INT)
RETURNS TABLE
 AS
RETURN(
SELECT ProductID,
 COUNT(*) AS ProductCount,
 SUM(LineTotal) AS ProductTotal
 FROM Sales.SalesOrderHeader SOH
 JOIN Sales.SalesOrderDetail SOD
 ON SOH.SalesOrderID = SOD.SalesOrderID
 WHERE SOH.CustomerID = @CustomerID
 AND YEAR(OrderDate) = @nYear
 GROUP BY ProductID)

Listing 12. CROSS APPLY matches each customer to the
customer’s function results, providing the same results as the
query in Listing 10.
SELECT CustomerID, FirstName, LastName,
 CustProdSales.ProductID, Name,
 ProductCount, ProductTotal
 FROM Sales.Customer
 CROSS APPLY
 dbo.CustomerProductSalesForYear2(
 CustomerID, 2011) AS CustProdSales
 LEFT JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 LEFT JOIN Production.Product
 ON CustProdSales.ProductID =
 Product.ProductID
 ORDER BY CustomerID, ProductID;

OUTER APPLY, like OUTER JOIN
Until this point, we’ve looked only at the CROSS
APPLY operator, which matches every record on
the left with each record on the right. But like an
inner join, if the right side produces no results for a
given record on the left, that record doesn’t appear
in the result. With most of the examples we’ve con-
sidered so far, the most recent hires for each depart-
ment and the top-selling products each month, that
case is extremely unlikely to occur. Why would you
have a department with no employees? In what
month would no products have been sold? (I guess
that could happen in a seasonal business that closes
for some months of the year, but the queries we’re
using already omit those months.)

To demonstrate OUTER APPLY, instead con-
sider the problem of showing all customers with
their three largest (by amount) orders in a given
period (say, a year). For each customer, we want
one record for each of the top three. If the customer
placed no orders in that period, include a single
record for that customer.

We can do this with a CTE that uses OVER and
RANK(), and then use an OUTER JOIN between
the Customer table and the CTE. Listing 13 shows
the code, included in this month’s downloads as
AllTopCustomerSalesJoin.SQL.

Listing 13. One way to find the top three sales for each
customer in a specified year uses a CTE and OVER.
WITH csrTopThree
 (CustomerID, OrderDate, SubTotal)
AS
(SELECT CustomerID, OrderDate, SubTotal
 FROM (
 SELECT CustomerID, OrderDate, SubTotal,
 RANK() OVER (
 PARTITION BY CustomerID
 ORDER BY SubTotal DESC) AS nRank
 FROM Sales.SalesOrderHeader
 WHERE YEAR(OrderDate) = 2011
) csrCustomerOrders
 WHERE nRank <= 3)

SELECT Customer.CustomerID,
 FirstName, LastName,

Figure 4. You might collect a list of products purchased by each customer in order to populate a data warehouse.

September 2015	 FoxRockX� Page 13

 ISNULL(OrderDate, '') AS OrderDate,
 ISNULL(SubTotal, 0) AS OrderTotal
 FROM Sales.Customer
 LEFT JOIN csrTopThree
 ON Customer.CustomerID =
 csrTopThree.CustomerID
 JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 ORDER BY CustomerID, OrderTotal DESC;

As in the earlier examples, we can shorten
the code and make it more readable by using
APPLY. In this case, since we want all customers,
we’ll use OUTER APPLY, as in Listing 14; this
query is included in this month’s downloads as
AllTopCustomerSales.SQL.

Listing 14. OUTER APPLY provides another way to list all
customers with their largest orders in a specified year.
SELECT CustomerID, FirstName, LastName,
 ISNULL(OrderDate, '') AS OrderDate,
 ISNULL(SubTotal, 0) AS OrderTotal
 FROM Sales.Customer
 OUTER APPLY
 (SELECT TOP 3 OrderDate, SubTotal
 FROM Sales.SalesOrderHeader SOH
 WHERE SOH.CustomerID =
 Customer.CustomerID
 AND YEAR(OrderDate) = 2011
 ORDER BY SubTotal DESC
) CustTopSales
 JOIN Person.Person
 ON Customer.PersonID =
 Person.BusinessEntityID
 ORDER BY CustomerID, OrderTotal DESC;

On my machine, the OUTER JOIN version is
faster, but both run in a few hundred milliseconds.

Also, as with the earlier example, you can create a
table-valued function and then use it on the right side of
the APPLY. Using an inline function, I see performance
essentially identical to the version using OUTER
APPLY with a derived table. This month’s downloads
include CreateTopCustomerSalesFunction.sql and
AllTopCustomerSalesFunction.sql that, respectively,
create the function and use it.

Measuring Performance
Over the years, I’ve written probably hundreds of
timing tests in VFP, but I’d never done so in SQL
Server until I was testing APPLY. It turns out to be
quite simple to do a “quick and dirty” timing test.

Just as you would in VFP (and presumably,
in most languages), grab the start time, run the
process, grab the end time and subtract. The SQL
Server GETDATE() function returns the current
time as a datetime value. Listing 15 shows the skel-
eton for such a test.

Listing 15. SQL Server’s GETDATE() function makes it easy to
do “quick and dirty” timing tests.
declare @Start DateTime, @End DateTime;
select @Start = getdate();

-- Do the test

select @End = GETDATE();
SELECT @Start, @End,
 Datediff(ms, @Start, @End);

Why do I say this test is quick and dirty? For
a number of reasons. First, the machine you’re
testing on is running a number of other things. At a
minimum, you’re running Windows, which has all
kinds of things going in the background. Anything
else you’re running, like an email client, might steal
some cycles, too.

Second, SQL Server undoubtedly caches some
data. To avoid that effect, you’d at least have to
close SSMS and restart it between tests; it’s possible
that you’d actually need to restart the machine to
be sure to eliminate all caching effects.

Finally, the right way to actually test perfor-
mance is to run lots of tests, not just one or two or
five. The average of a series of tests (run under the
conditions implied by the last two paragraphs) is a
much better measure than any one test.

I should also point out that SSMS gives you
the ability to see how a query is executed using
its built-in Profiler. That’s useful when you don’t
understand which part of a query is slowing it
down.

Resources
I read a lot of articles and tried a lot of variations in
my quest to understand APPLY. Here are a few of
the more useful articles I found:

http://tinyurl.com/q5w2sp8
http://tinyurl.com/qced3ga
http://tinyurl.com/6qmjtss

If these don’t help, there are quite a few other
articles on the subject out there; you should have no
trouble finding one that speaks to you.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced numer-
ous Visual FoxPro applications for businesses and other
organizations. Tamar is author or co-author of a dozen
books including the award winning Hacker’s Guide to
Visual FoxPro, Microsoft Office Automation with Visual
FoxPro and Taming Visual FoxPro’s SQL. Her latest
collaboration is VFPX: Open Source Treasure for the
VFP Developer, available at www.foxrockx.com. Her
other books are available from Hentzenwerke Publish-
ing (www.hentzenwerke.com). Tamar was a Microsoft
Support Most Valuable Professional from the program's
inception in 1993 until 2011. She is one of the organizers
of the annual Southwest Fox conference. In 2007, Tamar
received the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

