
April, 2003

Customize the Task Pane Manager

You can add panes provided by others or create and distribute
your own

Tamar E. Granor, Technical Editor

In my last article, I explored the panes provided with the Task Pane

Manager. In this article, I'll show you how to extend the tool by
incorporating additional panes.

There are two ways to add panes to the Task Pane Manager. The

simpler, by far, is to install a pane supplied by someone else. The hard
way is to create your own.

Installing third-party panes

As VFP 8 comes into wide use, I expect most of the vendors of tools

for VFP will create task panes for their products. While each framework
and developer tool now has its own portal, some of them modal, the

Task Pane Manager provides an opportunity to unify all the tools we

use into a single interface.

Installing a pane supplied by someone else is a breeze. Open the Task

Pane Manager and click the Options button. In the Options window,
open the Task Pane Manager folder. Then choose Customize. On the

page that appears (Figure 1), click Install Pane.

Figure 1: Adding and creating panes—This page of the Task Pane Options window
lets you install third-party panes and create your own panes.

Task panes are distributed as XML files, so you're prompted to point to
the appropriate XML file. Once you do so, it appears in the Task Pane

Options window, and focus lands on that pane, so you can set any
options it may have. The pane is also added to the Task Pane

Manager, of course.

This month's Professional Resource CD includes

Mortgage_Calculator.XML, the installation file for a simple pane that
computes mortgage payments (Figure 2).

Figure 2: Mortgage Calculator pane—This pane, built with VFP code, computes loan
payments.

Creating custom panes

You use the same page of the Task Pane Options window to start the

process of creating your own panes, as well as to modify existing
panes. In this case, click Customize Panes, which opens the Pane

Customization window (Figure 3).

Figure 3: Creating and modifying panes—The Pane Customization window lets you
modify existing panes and create new ones.

To create a new page, click the New button on the button bar. The

Pane dialog (Figure 4) appears. In this dialog, you specify a "vendor"

(your name or your company name), the name for the new pane, and
the type of pane you're building.

Figure 4: Creating a new pane—This dialog lets you specify basic information for a
new task pane.

By default, the name you specify for Vendor is concatenated with the
Unique ID to form the complete identifier for the pane. This

combination increases the chances that every pane a user installs has
a completely unique identifier. (The default value for Unique ID is

generated using SYS(2015), but you can specify a different value if
you want.)

The string you specify for Name is the pane's "friendly name." It

appears in the Task Pane's button bar, as well as in the Task Pane
Options window.

The tool supports four pane types: Web Page, HTML, XML, and VFP
Controls. The type of a pane appears in the button bar of the Pane

Customization window. (In Figure 3, the Mortgage Calculator pane is a
VFP Controls pane.) We'll look at each type.

Web Page panes

The simplest type of pane to create is a Web Page. Web Page panes
simply display a specified website in the Task Pane Manager. The only

thing you need to specify for a Web Page pane is the URL of the
website. You do so on the Data page of the Pane Customization dialog

(Figure 5). Be aware that the appearance of this page changes
depending on the type of pane you're creating and on choices you

make on the page.

Figure 5: Specifying a Web Page pane—For this type of pane, the only required
information is the URL of the website to display.

There's one other item you may want to specify for this type of pane,
as well as for other panes—that's the image to associate with the

pane. The image appears next to the pane name in the button bar.

You specify it on the General page of the Pane Customization window

(see Figure 3).

The pane defined in Figure 5 is included on this month's PRD as

TSLLC_website.XML.

VFP Controls panes

For VFP developers, panes based on VFP code are clearly the next
easiest to create. The Mortgage Calculator on this month's PRD is a

VFP Controls pane—we'll look at its code to see how to build this sort

of pane.

For a VFP Controls pane, you specify a class and class library. The

class should be subclassed from the PaneContainer class in the
FoxPane.VCX class library that's part of the TaskPane project. (Unzip

XSource.ZIP in the Tools folder, and then look in the
VFPSource\TaskPane folder to find that .VCX.) While you probably can

create a pane based on a different class, using PaneContainer ensures
that all the necessary methods are present and that default behavior is

provided.

When you subclass PaneContainer, add the controls and code

necessary for the functionality you want the pane to have. The
Mortgage Calculator pane has a few labels and spinners to represent

the principal, interest and length of the loan, plus a textbox to contain
the payment amount and a button to perform the calculation. There's

one custom method, ComputePayment, which does the calculation

(using the VFP's Payment() function). The Init method of the pane
calls ComputePayment, as does the Click method of the Calculate

button.

Defining Options

Panes can have options, items that the user specifies that change the
behavior of the pane. For example, the Minesweeper pane has an

option for the size of the matrix. (To see it, open the Task Pane
Options window, and click on Minesweeper.) The Mortgage Calculator

pane has an option to indicate whether the interest rate specified is

annual or monthly. Figure 6 shows this option in the Task Pane
Options window.

Figure 6: Pane option—When creating a custom pane, you can define options that
the user can specify when using the pane.

Options are specified on the Options page of the Pane Customization
window (Figure 7). To add an option item, click New; the New Option

dialog (Figure 8) appears. Specify a name for the option, the type of
control it should use (textbox, checkbox, spinner, or password

textbox) and a caption for that control.

Figure 7: Pane options—The Options page of the Pane Customization dialog defines
options for the pane. The options specified here appear on the Options page for the
specified pane.

Figure 8: Adding options—The New Option dialog lets you specify the name of an
option and the control used for it.

Once an option has been defined, you can modify the control used to
display it by setting properties of the control. The properties grid on

the right-hand side of the Options page is initially populated with a few
properties you're likely to want to change. You can add other

properties to the list by clicking the New Property button above the

grid. Then specify the name of the property and it's added to the grid.
The Value column of the grid is editable, so you can set the properties.

Using Options

Of course, defining options wouldn't be very useful if there weren't a
way to use them in figuring out what appears in a pane. There are

actually two ways to access the value of a property; which one you
use depends on the situation.

VFP code that you write for a pane (whether in a subclass of
PaneContainer or in one of several other places used for HTML and

XML panes) generally receives one or more parameters. The one you

need for accessing option values is oContent, an object reference to an
object based on the Content class defined in FoxPaneContent.PRG. The

Content class has a GetOption method—pass it the name of the option
and it returns the current value. (Option values are stored between

VFP sessions.)

In the Mortgage Calculator pane, the OnRender method (inherited

from PaneContainer) has this code to get and apply the value of the
IsAnnual option:

LPARAMETERS oPane, oContent
LOCAL cResult
cResult = oContent.GetOption("isannual")
This.lIsAnnual = IIF(cResult = ".T.", .T., .F.)
IF This.lIsAnnual
 This.lblInterest.Caption = "Interest rate (annual %)"
ELSE
 This.lblInterest.Caption = "Interest rate (monthly %)"
ENDIF

The second way to use an option's value applies when you're using the
option in the specification for the pane. For example, you might define

a generalized Web Page pane that lets you specify a URL and then

displays that page. To do so, you'd add an option called url to the
pane. Then, on the Data page, in the URL textbox, specify:

##url##

You can see an example of this approach in the Community pane. Look

at the Data page for the Wiki section of the page. The call to the Wiki's
web service passes the parameter ##daysold##.

HTML and XML Panes

The last two types of panes, HTML and XML, have a lot in common.
Both display their content in an Internet Explorer ActiveX control. The

principal difference between the two is that XML panes must include an

XSL style sheet to convert the content to HTML.

The biggest difference between HTML and XML panes and the other

types is that HTML and XML panes generally have most of their
content in sections beneath the main pane. Web Page and VFP

Controls panes don't support sections. You can tell whether a pane has
sections by looking at the Task Pane Options window. Each section

appears as a checkbox on the General options page for the pane, so
you can control each separately. For example, the Solution Samples

pane contains two sections: Solution Samples and Add-in Links.

As an example, we'll build a pane that displays the weather forecast

for a number of different cities. The forecast information will be
retrieved using a web service whose definition is found at

http://hosting001.vs.k2unisys.net/Weather/PDCWebService/WeatherS
ervices.asmx?WSDL . (You need to register this web service before

creating or using the pane. See the sidebar for details.) The Weather

Report pane is included on this month's PRD for you to install as
described earlier in the article.

Once you've created the pane, you add sections by clicking the Add
button in the Pane Content listing of the Pane Customization window.

The new section shows up as a leaf node under the pane; you can
change its ID and name on the General page, as in Figure 9. In the

Weather Report pane, we'll use a section for each city we're interested
in.

Figure 9: Adding subsections—The Add button adds a section to the pane you're
editing. Each section has its own unique ID. Display of sections can be controlled
individually through the Task Pane Options window.

For an XML or HTML pane, the Data page specifies the raw source of
the pane. It may be HTML or XML. When a pane has sections, the Data

page for the pane itself ("Weather Report" in Figure 9) contains
information for the pane as a whole. Include the string "<!-- CONTENT

-->" to indicate where the content from the sections should be placed.
The data for the sections is concatenated and substituted for the

Content comment.

The data for the pane as a whole and for each section can come from a

variety of sources, shown in Table 1. The Help topic "Data Tab, Pane

Customization Dialog Box" has more information on these choices.

Table 1. Sources for XML and HTML data—The data for a pane or its sections can be
specified in a variety of ways. The same choices apply for specifying transformation
of data.

Source Type Description

Static Text The content or transformation is specified as XML, HTML (or,
for transformations, XSL) in an edit box on the page. A

Modify button appears to let you open an editing window.

Source Type Description

URL A URL to the content or transformation is specified in a text

box on the page.

Script The content or transformation is returned from VFP code.

The VFP code is specified in an edit box on the page. A
Modify button appears to let you open an editing window.

File The content or transformation is contained in a file, which
you specify in a text box on the page.

Web Service The content or transformation is supplied by calling a web

service. You specify the details for the call on the page.

For the Weather Report pane itself, the default data for an XML pane
works with just a small addition. Here's the Static Text specified:

<?xml version='1.0' encoding='utf-8' standalone='no'?>
<?xml:stylesheet type="text/xsl" href="weather.xsl"?>
<VFPData>
<!-- CONTENT -->
</VFPData>

The key change is the addition of a stylesheet reference. The specified
stylesheet (weather.xsl) is used to convert the XML weather data to

HTML for display. We'll take a look at it a little later on.

The sections each need to call the web service's GetWeather method,

passing an appropriate zip code. Although many web service methods
return an XML string as the result, the GetWeather method has a more

complex result, which is returned as an object. This requires additional

processing, so using a data source of Web Service isn't possible.
Instead, VFP code calls the web service and processes the result. Since

each section needs the same code, it's parameterized:

#define WEBSERVICE_URL ; "http://hosting001.vs.k2unisys.net/Weather/;
PDCWebService/WeatherServices.asmx?WSDL"
#define ERROR_NORETRIEVE_LOC ;
 "Unable to retrieve content at this time."
#define ERROR_WSCONNECT_LOC ;
 "Unable to connect to Web Service: "
LPARAMETERS oContent, nZipCode
LOCAL cXML, oXML
LOCAL oProxy
LOCAL oException
cXML = .NULL.

oProxy =Createobject("mssoap.soapclient30")
TRY
 oProxy.mssoapinit(WEBSERVICE_URL)
 TRY
 oXML = oProxy.GetWeather(nZipCode)
 * Rudimentary checking for right return type
 IF oXML.Length>0 AND ;
 NOT ISNULL(oXML.Item(0).ParentNode)
 cXML = oXML.item(0).ParentNode.xml
 ENDIF
 * Remove XMLNS info
 cRemove = STREXTRACT(cXML,"<GetWeatherResult",'>')
 cXML = STRTRAN(cXML,cRemove,"")
 CATCH TO oException
 m.oContent.LogError(.NULL., ERROR_NORETRIEVE_LOC, ;
 .NULL., .NULL., oException.Message)
 ENDTRY
CATCH TO oException
 m.oContent.LogError(.NULL., ;
 ERROR_WSCONNECT_LOC + WEBSERVICE_URL, .NULL., ;
 .NULL., oException.Message)
ENDTRY
RETURN cXML

If only one section needed this code, we could specify a Data Source

type of Script and paste the code into the edit box, substituting the
appropriate zip code. Since every section of the pane uses it, it makes

more sense to store the code as a PRG and call it from each pane. To
add the PRG to the pane, choose the View Files option button in the

Pane Customization window, which switches to the view shown in
Figure 10. Use the Add button to add the PRG file. In Figure 10, the

program has already been added; it's called GetWeather.PRG.

Figure 10: Pane Files—Choosing the View Files option button lets you see the files
associated with (and stored with) your pane.

Each section of the Weather Report pane needs to make a call to the

GetWeather program. To do this, specify the Data source as Script,

and then use code like this (for New York) as the script:

LPARAMETERS oContent
RETURN GetWeather(oContent, "10001")

Note the oContent parameter. Scripts used on the Data page must be

prepared to receive a single parameter, an object reference to the
pane's content. In this case, we pass that parameter along to

GetWeather, which uses it in case of a problem with the web service.

In addition to any manipulation you perform in the code that creates

the XML data, you have another opportunity to process the XML, using
the Transform Data page. You can specify no transformation, an XSL

transformation, or a VFP script. You have the same choices of source
for either XSL or a VFP script as for the data itself, those listed in Table

1.

For the Weather Report pane, the XML returned from the GetWeather
method needs to be tweaked a little before it's combined with the

results of the other sections. The main change is to eliminate a level of
nesting. The GetWeather method wraps the whole set of weather

forecasts in a <DayForecast> tag, then puts the individual forecasts

within <DailyForecast> tags within that tag. In addition, the method
result includes some information we're not interested in, such as an

abbreviation for the overall forecast.

As with the call to the method, every section needs to perform the

same XSL transformation, so a source type of File is used and the file
TransformWeather.XSL is specified. Here's the contents of that file:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
>
<xsl:output method="xml" indent="yes"
omit-xml-declaration="yes" standalone="no"/>
<xsl:template match="/">
 <xsl:apply-templates />
</xsl:template>
<xsl:template match="GetWeatherResult">
 <WeatherResult>
 <ZipCode><xsl:value-of select="ZipCode"/></ZipCode>
 <CityShortName><xsl:value-of select="CityShortName"/></CityShortName>
 <Time><xsl:value-of select="Time"/></Time>
 <Sunrise><xsl:value-of select="Sunrise"/></Sunrise>
 <Sunset><xsl:value-of select="Sunset"/></Sunset>
 <CurrentTemp><xsl:value-of select="CurrentTemp"/></CurrentTemp>
 <xsl:apply-templates select="DayForecast"/>
 </WeatherResult>
</xsl:template>
<xsl:template match="DayForecast">
 <xsl:apply-templates select="DailyForecast"/>
</xsl:template>
<xsl:template match="DailyForecast">
 <DailyForecast>
 <Day><xsl:value-of select="Day"/></Day>
 <Forecast><xsl:value-of select="Forecast"/></Forecast>
 <Abbrev><xsl:value-of select="Abbrev"/></Abbrev>
 <HighTemp><xsl:value-of select="HighTemp"/></HighTemp>
 <LowTemp><xsl:value-of select="LowTemp"/></LowTemp>
 </DailyForecast>
</xsl:template>
</xsl:stylesheet>

The pane itself (Weather Report) has no transformation specified.

However, we do need to convert the complete XML result to HTML.
That's the role of the Weather.XSL stylesheet specified in the Data

section of the pane:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
>
<xsl:template match="/">
 <xsl:apply-templates />

</xsl:template>
<xsl:template match="VFPData">
 <HTML>
 <HEAD>
 </HEAD>
 <STYLE>
 BODY {
 font-family:verdana;
 font-size:9pt;
 margin-top:0px;
 margin-left:2px;
 margin-right:2px;
 margin-bottom:2px;
 }
 H3 {
 margin-bottom:0px;
 margin-top:0px;
 font-weight: bold
 }
 TD {font-size:9pt}
 a:link { color: #0033CC;text-decoration: none}
 a:visited { text-decoration: none}
 a:hover { color: #CC0000;
 text-decoration: underline}
 A { text-decoration: underline; font-family:
 Verdana, Arial, Helvetica, sans-serif;
 color: #0066FF
 }
 TD.TableTitle
 {
 padding:2px;
 background-color:#8080C0;
 color:#FFFFFF;
 }
 A.toggle:link { color: #000000;
 text-decoration: none}
 A.toggle:visited { text-decoration: none}
 A.toggle:hover { color: #000000;
 text-decoration: none}
 A.toggle { text-decoration: none;
 color: #000000}

 </STYLE>
 <BODY leftmargin="0" topmargin="0">
 <TABLE width="100%" cellspacing="0"
 cellpadding="0">
 <TR>
 <TD class="TableTitle" width="100%"
 nowrap="nowrap">
 <h3>Weather Report for Selected Cities
 </h3></TD>
 <TD align="left" valign="center">
 </TD>
 </TR>
 <TR>

 <TD colspan="2" height="10"></TD>
 </TR>
 </TABLE>

 <xsl:apply-templates select="WeatherResult"/>
 </BODY>
 </HTML>
</xsl:template>
<xsl:template match="WeatherResult">
 <table width="100%">
 <tr>
 <td class="TableTitle">
 Forecast for
 <xsl:value-of select="CityShortName"/>
 as of <xsl:value-of select="Time"/>
 </td></tr></table>
 <p>Current temperature:
 <xsl:value-of select="CurrentTemp"/></p>
 <table width="100%">
 <xsl:apply-templates select="DailyForecast"/>
 </table>

</xsl:template>
<xsl:template match="DailyForecast">
 <tr>
 <td><xsl:value-of select="Day"/></td>
 <td><xsl:value-of select="Forecast"/></td>
 </tr>
</xsl:template>
</xsl:stylesheet>

These settings give you everything you need for the Weather Report

pane. In the version on this month's PRD, I've set up four cities (New
York, Philadelphia, Redmond, and San Diego), but you can set up

whatever list interests you. Figure 11 shows the Weather Report pane.

Figure 11: A custom XML pane—This pane shows the weather forecast for selected
cities, using a web service that provides the information.

This example doesn't demonstrate all the features an XML or HTML

pane can have. The Default Data page of the Pane Customization

window lets you specify initial contents for a web-based pane, in case
no web access is available the first time the pane is displayed. Once a

pane has been used once, the contents are cached and those cached
contents displayed if no web access is available.

Far more interesting is the Handler Code page. Not only can pane
content be dynamic, but it can run code, navigate to other panes,

open a browser, and pretty much anything else you can write code for.
By convention, any URL in a pane that begins with the string "vfps:"

(presumably, for "Visual FoxPro script") executes the handler code.
The rest of the URL is parsed to indicate what action to take and to

provide parameters for that action.

The Task Pane engine provides a number of script actions; they're

shown in Table 2. For example, clicking on a hyperlink that has this
URL opens a browser to the Advisor web site:

vfps:linkto?url=http://www.advisor.com/

Table 2. Predefined script actions—You can use these actions in your pane without
writing any code.

Action Purpose Parameters received

gotopane Switch to the specified pane uniqueid=cPaneUniqueID

help Display the specified help topic id=cTopicID

or

topic=cTopicName

linkto Open a browser displaying the

specified web page

url=cUrl

message Display a message box msg=cMessage

options Display the Task Pane Options
dialog with a specified pane chosen

uniqueid=cPaneUniqueID

refresh Reload the current pane None

In addition, you can write custom code and define your own actions.
Handler code is VFP code. It receives four parameters, shown in Table

3. When you click the Modify button on the Handler Code page to
begin writing handler code, the window that opens contains the

necessary parameter declarations, along with explanatory comments.

Table 3. Parameters to handler code—Code called by a "vfps:" link receives these
parameters.

Parameter Meaning

cAction The action specified in the link, such as "gotopane."

oParameters A collection listing the parameters passed in the link. The

collection has a GetParam method to return the value of a
specified parameter.

oBrowser An object reference to the Browser ActiveX object in which
the pane is displayed.

oContent An object reference to the content of the pane.

A number of the panes provided with VFP 8 use handler code, using

both the built-in actions and custom actions. Exploring those panes in
the Pane Customization window is a good way to get a feeling for

what's possible.

Publishing Panes

While you can create panes just for your own use, it's easy to
distribute your panes to others. The tool allows you to create an XML

file that others can install in their own Task Pane Manager. To publish

a pane, highlight the appropriate pane in the Pane Customization
window and click Publish. The Publish Pane dialog (Figure 12) appears

to let you indicate exactly what portion of the pane and its associated
files should be included in the XML file.

Figure 12: Publishing task panes—The Publish Pane dialog lets you specify which
portions of the pane and which associated files are included in the XML file.

You have two choices regarding pane content. You can publish the

entire pane, or only selected sections. For files, you have several
options. Check Publish files associated with the pane to ensure that all

the files used by the pane (such as TransformWeather.XSL in the
Weather Report example) are included. Check Publish Files common to

all panes to distribute files used by all panes, such as those involved in
error reporting.

When you choose OK, you're prompted to specify a file name for the
XML file. The default is the name of the pane with spaces replaced by

underscores. For example, for the Weather Forecast pane, the default
file name is weather_report.XML.

Under the Hood

The strategy used for task pane data is a little unusual, so it's worth
taking a brief look at it. By default, task pane data is stored in a

directory tree beginning in the TaskPane subdirectory of the user
application data directory (specified by HOME(7)). You can change the

data storage location in the Task Pane Options window. The discussion
here assumes you're using the default location.

The TaskPane directory contains two tables and a subdirectory called

PaneCache. The TaskPane table contains one record for each pane.
The PaneContent table contains one record for each section of each

pane, using the pane's unique id to link the records. Both tables store
a fair amount of the pane's data in memo fields. For example, the

TaskPane table has ClassLib and ClassName memos to store the class
information for VFP Controls panes. Similarly, the Data memo of

PaneContent stores the actual data for a pane or section, as specified
on the Data page of the Pane Customization window.

The PaneCache directory is where things get interesting. It has a
subdirectory for each pane, named using the pane's unique ID. The

files that belong to that pane (such as GetWeather.PRG and
Weather.XSL in the Weather Report pane) are stored in that directory.

It's also used as a working directory for code executed by the pane.
The most important consequence of this structure is that once you've

added a file to a pane, modifying the original file doesn't affect the

pane and modifying the code in the pane doesn't affect your original
file on disk.

The Bottom Line

The Task Pane Manager is an incredibly powerful portal that lets you

combine a wide variety of functionality into one container. Expect to
see task panes for many of the third-party tools for VFP. Consider

defining your own task panes for things you need all the time, or to
share functionality with coworkers and others.

Sidebar: Registering Web Services

Registering a web service with VFP provides you with IntelliSense for
the web service and makes it possible to create code to use the web

service via drag-and-drop. In VFP 8, registering a web service is
straightforward.

You can access the Web Services Registration dialog from the Web

Services pane of the Task Pane Manager (click "Register an XML Web
Service"), the My XML Web Services section of the Toolbox (click

"Register"), or, as in VFP 7, the Types page of the IntelliSense
Manager (click "Web Services"). Once the dialog opens, you can simply

type or paste the WSDL URL for the web service into the combo box
and click Register.

The dialog also provides search functionality if you're looking for a web
service to perform a particular task.

