Consolidate data from a

field into a list

This task is hard in VFP, but SQL Server provides two ways to do it.

Tamar E. Granor, Ph.D.

Some SQL commands were added to FoxPro 2.0
and I fell in love with them as soon as I started play-
ing around. Over the years, Visual FoxPro’s SQL
subset has grown, but there are still some tasks that
are hard or impossible to do in VFP, but a lot easier
in other SQL dialects. In my next few articles, Il
take a look at some of these tasks, showing you
how VEFP requires a blend of SQL and Xbase code,
but SQL Server allows them to be done with SQL
code only.

One of the most common questions I see in online
VEFP forums is how to group data, consolidating the
data from a particular field. If the consolidation you
want is counting, summing, or averaging, the task
is simple; just use GROUP BY with the correspond-
ing aggregate function.

But if you want to, for example, create a com-
ma-separated list of all the values, there’s no SQL-
only way to do it in VFP. SQL Server, however, pro-
vides not one, but two, ways.

The VFP way

Using the Northwind database that comes with
VFP, suppose you want (probably for reporting
purposes) to have a list of orders, with a comma-
separated list of the products included in each or-
der, something like what you see in Figure 1.

VFP’s SQL commands offers no way to com-
bine the products like that. Instead, you have to run
a query to collect the raw data and then use a loop

Cproducts -

to combine the products for each order. Listing 1
shows the code used to produce the cursor for the
figure.

Listing 1. To consolidate data into a comma-separated list in
VFP requires a combination of SQL and Xbase code.

OPEN DATABASE FORCEPATH ("Northwind", ;
ADDBS (_samples) + "Northwind")

SELECT DISTINCT Orders.OrderID, ;
Products.ProductName ;
FROM Orders ;
JOIN OrderDetails ;
ON Orders.OrderID = ;
OrderDetails.OrderID ;
JOIN Products ;
ON OrderDetails.ProductID = ;
Products.ProductID ;
ORDER BY Orders.OrderID, ProductName ;
INTO CURSOR csrOrderProducts

LOCAL cProducts, cCurOrderID
CREATE CURSOR csrOrderProductList ;
(i0rderID I, cProducts C(150))

SELECT csrOrderProducts
cCurOrderID = csrOrderProducts.OrderID
cProducts = "'

SCAN
IF csrOrderProducts.OrderID <> m.cCurOrderID
* Finished this order
INSERT INTO csrOrderProductList ;
VALUES (m.cCurOrderID, ;
SUBSTR (m.cProducts, 3))
cProducts = "'
cCurOrderID = csrOrderProducts.OrderID
ENDIF

Ioxderid
» Mozzarella di Giovanni, Queso Cabrales, Singaporean Hokkien Fried Mee

10249 Manjimup Dried Apples, Tofu

10250 Jack's New England Clam Chowder, Louisiana Fiery Hot Pepper Sauce, Manjimup Dried Apples

10251 :Gustaf's Kndckebrdd, Louisiana Fiery Hot Pepper Sauce, Ravioli Angelo

10252 i Camembert Pierrot, Geitost, Sir Rodney's Marmalade

10253 Chartreuse verte, Gorgonzola Telino, Maxilaku

10254 i Guaran Fant stica, Longlife Tofu, PAté chinois

10255:Chang, Inlagd Sill, Pavlova, Raclette Courdavault

10256 :i0riginal Frankfurter grine Sode, Perth Pasties

10257 i Chartreuse verte, Original Frankfurter griine Sode, Schoggi Schokolade

10258 iChang, Chef Anton's Gumbo Mix, Mascarpone Fabioli

10259 Gravad lax, Sir Rodney's Scones

I«

Figure 1. This shows each order from the Northwind database with a comma-separated list of the products ordered.

January 2014

FoxRockX Page 13

cProducts = m.cProducts + ', ' + ;
ALLTRIM (csrOrderProducts.ProductName)
ENDSCAN

The query uses DISTINCT because we only
want to include each product in the list once for
each order. It also sorts the results by OrderID,
which is necessary for the SCAN loop, and then by
name within the order, so the result has the prod-
ucts in alphabetical order.

The SCAN loop builds up the list of products
for a single order and then when we reach a new
order, adds a record to the result cursor and clears
the cProducts variable, so we can start over for the
new order.

The code in Listing 1 is included in this month’s
downloads as VFPProductsByOrder.PRG

The SQL way

SQL Server offers two ways to solve this problem.
Each approach teaches something about elements
of SQL Server that don’t exist in VFP’s SQL, so we’ll
look at each one.

We'll use the sample AdventureWorks (2008)
database to demonstrate. To get an example analo-
gous to the VFP example, we can join the Purchase-
OrderDetail table to the Product table to get a list
of the products included in each purchase order, as
in Listing 2.

Listing 2. This query, based on the AdventureWorks database,
produces a list of products for each purchase order.

SELECT PurchaseOrderID, Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail
On Production.Product.ProductID =
PurchaseOrderDetail.ProductID
ORDER BY PurchaseOrderID

We'll use this query as a basis for getting one
record per purchase order with the list of products
comma-separated.

FOR XML

The first approach uses the FOR XML clause. In
general, this clause allows you to convert SQL
results to XML. There are four variations of FOR
XML; three of them simply produce XML results
and vary only in how much control you have over
the format of the result. For example, if you add the
clause FOR XML AUTO at the end of the query in
Listing 2, you get results like those in Listing 3.

Listing 3. Adding FOR XML AUTO to the query in Listing 2 pro-
duces this XML. (Only a few records are shown.)

<Production.Product Name="Adjustable Race"
/>

<Production.Product Name="Thin-Jam Hex Nut
9" />

Page 14 FoxRockX

<Production.Product Name="Thin-Jam Hex Nut
" />

<Production.Product Name="Seat Post" />

<Production.Product Name="Headset Ball
Bearings" />

Using FOR XML RAW, instead, produces one
element of type <row> for each record, with each
field included as an attribute. Listing 4 shows the
first few records of the result.

Listing 4. FOR XML RAW produces simpler XML.

<row PurchaseOrderID="1" Name="Adjustable
Race" />

<row PurchaseOrderID="2" Name="Thin-Jam Hex
Nut 9" />

<row PurchaseOrderID="2" Name="Thin-Jam Hex
Nut 10" />

<row PurchaseOrderID="3" Name="Seat Post" />

A third version, FOR XML EXPLICIT, gives you
tremendous control over the format of the output,
at the cost of writing a more complex query. The
details are beyond the scope of this article, and the
documentation indicates that you can do the same
things using FOR XML PATH much more easily.
However, if you're interested, see http:/ /technet.
microsoft.com/en-us/library /ms189068.aspx.

The fourth version of FOR XML, using the
PATH keyword, provides what we need to consoli-
date the product data into a single record. FOR XML
PATH treats columns as XPath expressions. XPath,
which stands for XML Path language, lets you select
items in an XML document. Again, the full details
are beyond the scope of this article.

What you need to know to solve the problem of
creating a comma-separated list is that if you spec-
ify FOR XML PATH("), the expression you specify
in the query is consolidated into a single list, rather
than one record per value. For example, the query
in Listing 5 produces the results shown in Listing 6.

Listing 5. Use FOR XML PATH(") to combine data into a single
string.
SELECT ', ' + Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail
As A
On Production.Product.ProductID =
A.ProductID
WHERE A.PurchaseOrderID = 7
ORDER BY Name
FOR XML PATH('")

Listing 6. The query in Listing 5 produces a single string.

, HL Crankarm, LL Crankarm, ML Crankarm

The query here assembles the list for a single
purchase order, due to the WHERE clause. The
ORDER BY clause makes sure the products are listed
in alphabetical order.

January 2014

The field list in this case must either be an
expression, as in the example, or must include the
clause: AS "Data()". Otherwise, you get XML rather
than a simple list. Since you'll usually want some
punctuation between items, this isn’t a particularly
onerous restriction.

However, the query in Listing 5 doesn’t deal
with duplicate products in a single order. To dem-
onstrate, specify 4008 as the purchase order ID to
match rather than 7 (because order 4008 has a cou-
ple of duplicate products). When you do so, you
get the result shown in Listing 7. (I've added line
breaks to make it more readable; the actual result
is one long string with no breaks. Note also that the
product names include commas, so it might actu-
ally be better to separate the items with something
else, perhaps semi-colons.)

Listing 7. The query in Listing 5 doesn’t remove duplicates.
, Classic Vest, L, Classic Vest, L,

Classic Vest, M, Classic Vest, M,

Classic Vest, M, Classic Vest, S,

Full-Finger Gloves, L, Full-Finger Gloves, M,
Full-Finger Gloves, S, Half-Finger Gloves, L,
Half-Finger Gloves, M, Half-Finger Gloves, S,
Women's Mountain Shorts, L,

Women's Mountain Shorts, M,

Women's Mountain Shorts, S

To remove the duplicates, we need to use a
derived table within this query, as in Listing 8. The
derived table extracts the list of distinct product names
for the purchase order and then the main query can
sort them. The derived table is required because using
DISTINCT requires the field(s) listed in the ORDER
BY clause to be included in the SELECT list; in this
case, we're sorting by Name, but the SELECT list
includes only the expression (', ' + Name).

Listing 8. To have only distinct product names and be able to
sort them requires a derived table.

SELECT ', ' + Name
FROM (SELECT DISTINCT Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail
As A
On Production.Product.ProductID =
A.ProductID
WHERE A.PurchaseOrderID = 4008) DistNames
ORDER BY Name
FOR XML PATH('"')

Listing 9 shows the results of the query in List-
ing 8. As before, they’ve been reformatted for read-

ability.

Listing 9. With the more complex query in Listing 8, the results
don’t include duplicates.

, Classic Vest, L, Classic Vest, M,

Classic Vest, S, Full-Finger Gloves, L,
Full-Finger Gloves, M, Full-Finger Gloves, S,
Half-Finger Gloves, L, Half-Finger Gloves, M,
Half-Finger Gloves, S,

Women's Mountain Shorts, L,

Women's Mountain Shorts, M,

Women's Mountain Shorts, S

January 2014

The next issue is the leading comma in the result.
To remove it, we use the STUFF() function , which is
identical to the VFP STUFF() function. It replaces part
of a string with another string. In this case, we want to
replace the first two characters with the empty string.

However, you don’t put the STUFF() function
quite where you might expect. It has to wrap the
entire query that produces the list. Listing 10 shows
the query that produces the list without the leading
comma. Note that the query inside STUFF() has to
be wrapped with parentheses, just like a derived
table. (The opening parenthesis is before the key-
word SELECT, while the closing parenthesis fol-
lows the XML PATH(") clause. That’s followed by
the additional parameters for STUFF().)

Listing 10. To remove the leading comma on the list, we wrap
the whole query with STUFF().

SELECT STUFF((SELECT ', ' + Name
FROM (SELECT DISTINCT Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail
As A
On Production.Product.ProductID =
A.ProductID
WHERE A.PurchaseOrderID = 7) DistNames
ORDER BY Name
FOR XML PATH(''")), 1, 2, '")

We now have all the pieces we need to produce
results analogous to those in Figure 1. In the outer
query, we simply need to include the purchase
order’s ID. Listing 11 shows the query and Figure 2
shows part of the result, as displayed in SQL Server
Management Studio (SSMS). This query is included
in this month’s downloads as RollupOrdersForXML.
SQL.

Listing 11. Combining the query from Listing 10 with code to
include the purchase order number gives us the desired results.

SELECT PurchaseOrderID,
STUFF ((SELECT ', ' + Name
FROM (SELECT DISTINCT Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail
As A
On Production.Product.ProductID =
A.ProductID
WHERE Purchasing.PurchaseOrderDetail.Pur-
chaseOrderID
= A.PurchaseOrderID) DistName
ORDER BY Name
FOR XML PATH('')), 1, 2, '') OrderProducts
FROM Purchasing.PurchaseOrderDetail
GROUP BY PurchaseOrderID
ORDER BY 1

This solution is included in this month’s down-
loads as RollupOrdersForXML.sql.

Using a function

The second approach to producing the desired list
uses a function that consolidates the list of prod-
ucts. The downside of this approach is that you
either have to have the function in the database
or create it on the fly and then drop it afterward.

FoxRockX Page 15

OrderProducts

Adjustable Race

Thin-Jam Hex Nut 10, Thin-Jam Hex Nut 9
Seat Post

PurchaseOrder.

Headset Ball Bearings

HL Road Rim

Touring Rim

HL Crankarm, LL Crankarm, ML Crankarm

External Lock Washer 3, External Lock Washer 4, ...
9 Thin-Jam Lock Nut 1, Thin-Jam Lock Nut 10, Thin-...
Chainring, Chainring Bolts, Chainring Nut

11 Lock Nut 16, Lock Nut 17, Lock Nut 5, Lock Nut 6
Touring Pedal

13 13 Chainring, Chainring Bolts, Chainring Nut

W 00N A WN =

—4 =
- O
o

o
S

Figure 2. The query in Listing 11 produces this result.

If you need the comma-separated list of products
regularly, of course, there’s really no reason not to
add the function to the database.

The secret here is that the function accumulates
the list in a variable, which it then returns to the
main query. VFP doesn’t allow you to store query
results to a variable, but SQL Server does, using the
syntax in Listing 12. You can even assign results to
multiple variables in a single query. The variables
must be declared before the query.

Listing 12. SQL Server lets you store a query result into a vari-
able.

SELECT @VarName = <expression>
FROM <rest of query>

To create the comma-separated list, the expres-
sion on the right-hand side of the equal sign refer-
ences the variable on the left-hand side. The code
in Listing 13 shows how to do this for a single pur-
chase order. To display the results in SSSMS, add
SELECT @Products at the end of the code block.

Listing 13. The ability to store a query result in a variable
provides a way to accumulate the list of products for a single
purchase order.

DECLARE @Products VARCHAR (1000)

SELECT @Products =
COALESCE (@Products + ',', '') + Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail
As A
On Production.Product.ProductID =
A.ProductID
WHERE A.PurchaseOrderID = 7
ORDER BY Name

The COALESCE() function accepts a list of
expressions and returns the first one with a non-
null value. Since @Products is initially null (because
it’s not given an initial value), on the first record,
COALESCE() chooses the empty string and the
result doesn’t have a leading comma.

As in the FOR XML PATH case, the query here
doesn’t remove duplicates. The solution is the same
here; use a derived query to produce the list of dis-
tinct products before combining them. Listing 14
shows the code that produces a sorted list of dis-
tinct products for one purchase order.

Listing 14. To include each product only once in the list, we
again use a derived query inside the query that assembles the
comma-separated list.

DECLARE @Products VARCHAR (1000)

SELECT @Products =
COALESCE (@Products + ',', '') + Name
FROM (SELECT DISTINCT Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail
As A
On Production.Product.ProductID =
A.ProductID
WHERE A.PurchaseOrderID = 4008) DistNames
ORDER BY Name

We can use this code in a function to return the
rolled-up list for a single purchase order. The main
query calls the function for each purchase order.
Listing 15 shows the full code for this solution.
Note that it creates the function, uses it and then
drops it. As noted earlier, if you're going to do this
regularly, just create the function once and keep it.

Listing 15. This solution to the problem uses a function that
rolls up the products for a single order.
CREATE FUNCTION ProductList (@POId INT)
RETURNS VARCHAR (1000)
AS
BEGIN
DECLARE @Products VARCHAR (1000)

SELECT @Products =
COALESCE (@Products + ',', '') + Name
FROM (SELECT DISTINCT Name
FROM Production.Product
Inner Join Purchasing.PurchaseOrderDetail
As A
On Production.Product.ProductID =
A.ProductID
WHERE A.PurchaseOrderID = @POId) DistNames
ORDER BY Name

RETURN (@Products
END

go
SELECT DISTINCT PurchaseOrderID,
dbo.productList (PurchaseOrderID)
AS ProductList
FROM Purchasing.PurchaseOrderDetail
go

DROP FUNCTION dbo.ProductList
GO

Using DISTINCT in the main query ensures
that we see each purchase order only once; other-
wise, each would appear once for each included
product.

This solution is included in this month’s down-
loads as RollupOrdersByFunction.sql.

Which one?

Given two solutions, which one should you use? In
my tests, the FOR XML PATH solution seems to be
faster. However, the dataset in AdventureWorks is
fairly small, so may not provide a good testbed. I
recommend testing both solutions against your ac-
tual data.

Page 16 FoxRockX January 2014

If you find no significant difference in execu-
tion, then use the one that you find easier to read
and comprehend, since you're likely to have to re-
visit it at some point.

Author Profile

Tamar E. Granor, Ph.D. is the owner of Tomorrow s Solutions,
LLC. She has developed and enhanced numerous Visual
FoxPro applications for businesses and other organizations.
Tamar is author or co-author of nearly a dozen books
including the award winning Hacker’s Guide to Visual

FoxPro, Microsoft Office Automation with Visual FoxPro
and Taming Visual FoxPro’s SQL. Her latest collaboration
is VFPX: Open Source Treasure for the VFP Developer,
available atwww.foxrockx.com. Her other books are available
from Hentzenwerke Publishing (www.hentzenwerke.com).
Tamar was a Microsoft Support Most Valuable Professional
from the program's inception in 1993 until 2011. She is one
of the organizers of the annual Southwest Fox conference.
In 2007, Tamar received the Visual FoxPro Community
Lifetime Achievement Award. You can reach her at tamar@
thegranors.com or through www.tomorrowssolutionsllc.com.

