
July, 2002

Advisor Answers

Checking Spelling in VFP

VFP 7.0

Q: Is it possible to use the spelling checker from Office to check the
contents of a VFP editbox?

–Anne-Mie Vanhulle (via DevX.COM)

A: You can do this using Automation to the spelling engine. However,

while several Office products use the spelling engine, as far as I can
tell, it's not available as a separate object; it can only be used from

within one of the other products. (For an explanation of Microsoft's
position on this issue, see Microsoft Knowledge Base article Q262605.)

Both Word and Excel expose spelling methods, but Word's is better
behaved for Automation purposes, so we'll tackle the problem from

that side.

Word offers two approaches to checking spelling. First, you can simply

pass a string to the CheckSpelling method of the application object

and get back a logical value indicating whether the string passes. So, if
all you want is to know whether or not there are any spelling

problems, you can use code like this:

cString = "The last word of this sentence is mispelled"
* or, to check an editbox value, something like:
* cString = ThisForm.edtMyEditBox.Value
oWord = CreateObject("Word.Application")
lCorrect = oWord.CheckSpelling(cString)

However, in most cases, you probably want more than that. If there is

a spelling error, you'd like to know what it is and give the user a
chance to do something about it. Fortunately, Word offers another

option. The GetSpellingSuggestions method fills a SpellingSuggestions
collection with recommended corrections for the word you pass to it. If

the collection is empty (its Count property is 0), the word passed the
spelling check. However, you must have a document open in Word,

even if it's an empty one. So you can check a word and get a list of
suggestions like this:

cWord = "mispelled"
oWord = CreateObject("Word.Application")
oWord.Documents.Add()

oSuggestions = oWord.GetSpellingSuggestions(cWord)

Then, to see the suggestions, you can use a FOR EACH loop:

FOR EACH oSuggestion in oSuggestions
 ? oSuggestion.Name
ENDFOR

Of course, in an application, you wouldn't just display the suggestions
in the active window. You might handle them by displaying a listbox or

by populating a context menu or in any of a number of other ways. I'll
leave that part of the problem to you.

However, to make it easy to do whatever you need, I created a class
with a method that calls the GetSpellingSuggestions method and puts

all the suggestions into an array. Since there might be other facilities

from Word you'd like to use in this way, the class library is called
WordUtils. This class is cusSpellCheck.

The class has three custom properties:

oWord contains an object reference to Word.

aSuggestions is an array property with one suggested correction per
row. Each row contains the original word, its position in the original

string, and one suggested correction.

nSuggestions contains the total number of suggestions, that is, the

number of rows in aSuggestions.

There are two custom methods, CheckWord and CheckSpelling.

CheckWord checks whether oWord currently contains a reference to
Word. If not, it starts Word and stores the reference in the oWord

property. Here's the code for CheckWord:

* Check for a Word object.
* If not found, instantiate one.

LOCAL lReturn

lReturn = .T.
IF VARTYPE(This.oWord)#"O" OR TYPE("This.oWord.Name")#"C"
 This.oWord = CREATEOBJECT("Word.Application")
ENDIF

* Double-check
IF VARTYPE(This.oWord)#"O" OR TYPE("This.oWord.Name")#"C"
 lReturn = .F.
ENDIF

RETURN lReturn

CheckSpelling is the heart of the class. You pass it a string and it

checks the spelling for each word in the string. All spelling suggestions
are stored in the aSuggestions array property. Here's the code:

* CheckSpelling
LPARAMETERS cString

ASSERT VARTYPE(cString) = "C" ;
 MESSAGE "CheckSpelling: First parameter " + ;
 "(cString) must be character"

IF VARTYPE(cString) <> "C"
 ERROR 11
 RETURN .F.
ENDIF

LOCAL lReturn, nWords, nWord
LOCAL oSuggestions as Word.SpellingSuggestions
LOCAL oSuggestion as Word.SpellingSuggestion

DIMENSION This.aSuggestions[1]
This.aSuggestions[1] = ""
This.nSuggestionCount = 0

IF EMPTY(cString)
 lReturn = .t.
ELSE
 IF This.CheckWord()
 WITH This.oWord
 .Documents.Add()

 lReturn = .T.
 nWords = GETWORDCOUNT(cString)
 nSuggCount = 0
 FOR nWord = 1 TO nWords
 cWord = GETWORDNUM(cString, nWord)
 oSuggestions = .GetSpellingSuggestions(cWord)
 IF oSuggestions.Count <> 0
 lReturn = .F.
 * Parse the list and put into the array
 FOR EACH oSuggestion IN oSuggestions
 This.nSuggestionCount = ;
 This.nSuggestionCount + 1
 DIMENSION This.aSuggestions[;
 This.nSuggestionCount, 3]
 This.aSuggestions[;
 This.nSuggestionCount, 1] = nWord
 This.aSuggestions[;
 This.nSuggestionCount, 2] = cWord
 This.aSuggestions[;
 This.nSuggestionCount, 3] = ;

 oSuggestion.Name
 ENDFOR
 ENDIF
 ENDFOR
 ENDWITH
 ELSE
 lReturn = .F.
 ENDIF
ENDIF

RETURN lReturn

Finally, there's code in the Destroy method to close the Word instance:

* Clean up

IF VARTYPE(This.oWord) = "O"
 This.oWord.Quit(0)
ENDIF

RETURN

To use the class to check spelling, use code like this:

cString = "The last word of this sentence is mispelled"
oSpeller = NewObject("cusSpellCheck","WordUtils")
IF NOT oSpeller.CheckSpelling(cString)
 * Something's misspelled, so take action
ENDIF

As shown, this class requires VFP 7 because it uses the new

GetWordCount() and GetWordNum() functions. However, you can
replace them with their FoxTools' equivalents (Words() and

WordNum()) to use this code in earlier versions of VFP.

It's also worth noting that the class is written to open Word once and

keep it open, closing Word when the class is destroyed. This makes it
easy to check the spelling of multiple strings. While the first call may

be a little slow because Word is instantiated at that time, after that, it

should be pretty quick.

The class library WordUtils.VCX is included on this month's

Professional Resource CD.

–Tamar

