
November, 2000

ADVISOR Answers

Application Version Information

VFP 6.0/5.0

Q: How do you find out the version number of a compiled VFP .EXE file
at runtime? I'm referring to the version number from the Build/Version

screen of the project manager, not simply the version number of VFP.
I've used the following, which returns the version number in the fourth

array element but isn't there a better way?

AGetFileVersion(aFileInfo, PROGRAM() + '.EXE')

–Steve Koch, Honolulu, HI (via Advisor.com)

A: In fact, the AGetFileVersion() function was added in VFP 6

specifically for this purpose. It provides version information about any
.EXE or .DLL that has the information stored in it. It's the same

information you can find by right clicking on the file in Windows
Explorer and choosing Properties, then going to the Version page of

the Properties dialog.

AGetFileVersion() actually returns 15 different pieces of information
about the file. You pass an array and the file name (including the path,

if necessary). If the file exists and has version information, the array is
created, if it doesn't exist, or resized if it does, and filled with the

version information.

The function returns 15 when it's successful and 0 when it's

unsuccessful. In code, however, it's best to test for 0 or a non-zero
value, since it's possible that the number of elements returned and

thus, the value returned may change in future versions of VFP.

What are all those array elements and how do you specify them? Table

1 shows the contents of the array created by AGetFileVersion(). Some
of the elements there may seem to be redundant. What's the

difference between "internal filename," "original filename," and
"product name?" What's the difference between "file version" and

"product version?" What's a "private build" or a "special build?" That

depends what company you ask.

Table 1. File Version Information – The AGetFileVersion() function provides the
information that's in the Properties dialog for .EXE and .DLL files and a whole lot
more.

Element Contents

1 File comments

2 Company Name

3 File Description

4 File Version

5 Internal Filename

6 Copyright

7 Trademarks

8 Original Filename

9 Private Build

10 Product Name

11 Product Version

12 Special Build

13 Does this file register itself for OLE?

Contains "OLESelfRegister" if so;
empty otherwise.

14 Language

15 Translation code

Microsoft defined this format for file information and has its own
definitions for these terms, but not every other company applies them

the same way. It's a pretty safe bet that the fourth item in the array
will give you the version number of a file and that the tenth item will

give the public name, the one that appears in the splash screen. In
Microsoft's view, the fifth element, internal filename, doesn't include

the file's extension, while the eighth element, does. However, when I

tested applications from other vendors, sometimes the fifth element

contained the file extension and sometimes it didn't.

Several of the items simply contain whatever text has been stored in

them. They include the first element (file comments), the second
element (company name), the third element (file description), the

sixth element (copyright) and the seventh element (trademarks).

By now, you're probably wondering how you get all this information

into your executable. There are two ways to do in VFP 6. One is
interactive, while the other is programmatic.

Interactively, the Project Manager's Build dialog includes a Version
button. When you click it, the dialog in Figure 1 appears. You can

specify the version number, as well as the various textual items for the
file.

Figure 1. Adding version information–This dialog, accessible through the Project
Manager's Build dialog, lets you specify the version number and other information
about your project that can then be retrieved using AGetFileVersion().

If you check the Auto-Increment checkbox, the last part of the Version
number, labeled Revision in Figure 1, will go up by 1 each time you

build the project, so you don't have to remember to do it yourself.

It's also possible to specify the project's version information

programmatically by using the Project object. Whenever you open a
project in VFP 6 and later, a Project object is created. You can access

it through the _VFP system variable. The Project object has properties

with names like VersionComments, VersionCopyright and
VersionTrademarks. You can set these properties. Then, when you

build the project, those values will be built into the executable just as
it you'd entered those values in the Version dialog. For example, to set

the properties of a project called FoxIsGreat, you could do the
following:

MODIFY PROJECT FoxIsGreat NOSHOW
oProject = _VFP.ActiveProject
WITH oProject
 .VersionComments = "This is the latest and " + ;
 "greatest version of the FoxIsGreat product!"
 .VersionCompany = "Tamar's Applications"
 .VersionDescription = "FoxIsGreat 3.0"
 .VersionNumber = "3.0.0203"
 .AutoIncrement = .T.
 .VersionCopyright = "Copyright 2000, Tamar's Applications"
 .VersionProduct = "FoxIsGreat"
ENDWITH

It's worth noting that you specify the language as a numeric value
(that is VersionLanguage is numeric), but the 14th element of the

array returned by AGetFileVersion() indicates the language as a
character string. In the Version dialog, you can specify the language

using either its name or its numeric id.

Versions before VFP 6 had neither the AGetFileVersion() function nor

the Project object. In VFP 5, you could still specify version information
interactively using the Version dialog shown in Figure 1. Beginning in

VFP 5, the FoxTools library includes a function called GetFileVersion()
that lets you extract file version information from .EXE and .DLL files.

It accepts parameters in the opposite order of AGetFileVersion() – that
is, it takes the file name first, then the array. GetFileVersion() returns

only 12 items (the last 3 in Table 1 are omitted). You must create the

array with 12 elements and pass it by reference to the function.
GetFileVersion() returns 0 if it's successful and –1, if it fails.

In VFP 3, there's no easy way to specify version information and it's
necessary to use API calls to retrieve it.

Now back to your original question–getting the version information
from the application that you're running. AGetFileVersion() is the way

to go. However, the example you offer won't work because
PROGRAM() returns the program you're executing at the moment,

which may or may not be the one at the top of the program chain. It

also isn't the .EXE, but the program, form, method or menu that's

running.

You need to make sure you pass the name of the .EXE file. To do that,

use SYS(16, 1), which returns the name of the executable (or
application). However, depending on what you choose for your main

program, even SYS(16,1) may return something other than the .EXE
or .APP file. So, your best bet is to grab that information immediately,

in the main routine itself. For an application that uses a form as the
main program, call SYS(16,1) in the Load method and save the

information in an application property. For a menu-based main
program, do it in the Setup code. In any application, you can save the

file name of the .EXE or .APP with something like this, where goApp is
the variable that references the application object:

goApp.EXEFile = SYS(16,1)

Once you've stored the file name, to determine file version information
from anywhere in your application, use code like this:

IF AGetFileVersion(aVersionInfo, goApp.EXEFile) > 0
 * Proceed
ELSE
 * This EXE doesn't have version info
ENDIF

–Tamar

